33 research outputs found

    Fetuin-B, a potential link of liver-adipose tissue cross talk during diet-induced weight loss–weight maintenance

    Get PDF
    BACKGROUND/OBJECTIVES: Numerous hepatokines are involved in inter-organ cross talk regulating tissue-specific insulin sensitivity. Adipose tissue lipolysis represents a crucial element of adipose insulin sensitivity and is substantially involved in long-term body weight regulation after dietary weight loss. Thus, we aimed to analyze the impact of the hepatokine Fetuin-B in the context of weight loss induced short- and long-term modulation of adipose insulin sensitivity. SUBJECTS/METHODS: 143 subjects (age > 18; BMI >= 27 kg/m(2)) were analyzed before (T-3) and after (T0) a standardized 12-week dietary weight reduction program. Afterward, subjects were randomized to a 12-month lifestyle intervention or a control group. After 12 months (T12) no further intervention was performed until 6 months later (T18) (Maintain-Adults trial). Tissue-specific insulin sensitivity was estimated by HOMA-IR (predominantly liver), ISIClamp (predominantly skeletal muscle), and free fatty acid suppression during hyperinsulinemic-euglycemic clamp (FFA(Supp)) (predominantly adipose tissue). Fetuin-B was measured at all concomitant time points. RESULTS: Circulating Fetuin-B levels correlated significantly with estimates of obesity, hepatic steatosis as well as HOMA-IR, ISIClamp, FFA(Supp) at baseline. Fetuin-B decreased during dietary weight loss (4.2 (3.5-4.9) vs. 3.8 (3.2-4.6) mu g/ml; p = 2.1 x 10(-5)). This change was associated with concomitant improvement of HOMA-IR (r = 0.222; p = 0.008) and FFA(Supp) (r = -0.210; p = 0.013), suggesting a particular relationship to hepatic and adipose tissue insulin sensitivity. Weight loss induced improvements of insulin resistance were almost completely preserved until months 12 and 18 and most interestingly, the short and long-term improvement of FFA(Supp) was partially predicted by baseline level of Fetuin-B. CONCLUSIONS: Our data suggest that Fetuin-B might be a potential mediator of liver-adipose cross talk involved in short- and long-term regulation of adipose insulin sensitivity, especially in the context of diet-induced weight changes

    Toward a comprehensive view of cancer immune responsiveness: a synopsis from the SITC workshop.

    Get PDF
    Tumor immunology has changed the landscape of cancer treatment. Yet, not all patients benefit as cancer immune responsiveness (CIR) remains a limitation in a considerable proportion of cases. The multifactorial determinants of CIR include the genetic makeup of the patient, the genomic instability central to cancer development, the evolutionary emergence of cancer phenotypes under the influence of immune editing, and external modifiers such as demographics, environment, treatment potency, co-morbidities and cancer-independent alterations including immune homeostasis and polymorphisms in the major and minor histocompatibility molecules, cytokines, and chemokines. Based on the premise that cancer is fundamentally a disorder of the genes arising within a cell biologic process, whose deviations from normality determine the rules of engagement with the host\u27s response, the Society for Immunotherapy of Cancer (SITC) convened a task force of experts from various disciplines including, immunology, oncology, biophysics, structural biology, molecular and cellular biology, genetics, and bioinformatics to address the complexity of CIR from a holistic view. The task force was launched by a workshop held in San Francisco on May 14-15, 2018 aimed at two preeminent goals: 1) to identify the fundamental questions related to CIR and 2) to create an interactive community of experts that could guide scientific and research priorities by forming a logical progression supported by multiple perspectives to uncover mechanisms of CIR. This workshop was a first step toward a second meeting where the focus would be to address the actionability of some of the questions identified by working groups. In this event, five working groups aimed at defining a path to test hypotheses according to their relevance to human cancer and identifying experimental models closest to human biology, which include: 1) Germline-Genetic, 2) Somatic-Genetic and 3) Genomic-Transcriptional contributions to CIR, 4) Determinant(s) of Immunogenic Cell Death that modulate CIR, and 5) Experimental Models that best represent CIR and its conversion to an immune responsive state. This manuscript summarizes the contributions from each group and should be considered as a first milestone in the path toward a more contemporary understanding of CIR. We appreciate that this effort is far from comprehensive and that other relevant aspects related to CIR such as the microbiome, the individual\u27s recombined T cell and B cell receptors, and the metabolic status of cancer and immune cells were not fully included. These and other important factors will be included in future activities of the taskforce. The taskforce will focus on prioritization and specific actionable approach to answer the identified questions and implementing the collaborations in the follow-up workshop, which will be held in Houston on September 4-5, 2019

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Effects of Weight Loss on Adipose and Muscular Neuropilin 1 mRNA Expression in Obesity: Potential Implication in SARS-CoV-2 Infections?

    No full text
    Introduction!#!Neuropilin 1 (NRP-1) is a novel co-receptor promoting SARS-CoV-2 infectivity. Animal data indicate a role in trans-endothelial lipid transport and storage. As human data are sparse, we aimed to assess the role of NRP-1 in 2 metabolic active tissues in human obesity and in the context of weight loss-induced short- and long-term metabolic changes.!##!Methods!#!After a standardized 12-week weight reduction program, 143 subjects (age &amp;gt;18; body mass index ≥27 kg/m2, 78% female) were randomized to a 12-month lifestyle intervention or a control group using a stratified randomization scheme. This was followed by 6-month follow-up without any intervention. Phenotyping was performed before and after weight loss, after 12-month intervention and after subsequent 6 months of follow-up. Tissue-specific insulin sensitivity was estimated by HOMA-IR (whole body and mostly driven by liver), insulin sensitivity index (ISI)Clamp (predominantly skeletal muscle), and free fatty acid (FFA) suppression during hyperinsulinemic-euglycemic clamp (FFASupp) (predominantly adipose tissue). NRP-1 mRNA expression was measured in subcutaneous adipose tissue (NRP-1AT) and skeletal muscle (NRP-1SM) before and after weight loss.!##!Results!#!NRP-1 was highly expressed in adipose tissue (7,893 [7,303-8,536] counts), but neither NRP-1AT nor NRP-1SM were related to estimates of obesity. Higher NRP-1AT was associated with stronger FFASupp (r = -0.343, p = 0.003) and a tendency to higher ISIClamp (r = 0.202, p = 0.085). Weight loss induced a decline of NRP-1AT but not NRP-1SM. This was more pronounced in subjects with stronger reduction of adipose ACE-2 mRNA expression (r = 0.250; p = 0.032) but was not associated with short- and long-term improvement of FFASupp and ISIClamp.!##!Conclusion!#!NRP-1AT is related to adipose insulin sensitivity in obesity. Weight loss-induced decline of NRP-1AT seems not to be involved in metabolic short- and long-term improvements after weight loss. However, weight loss-induced reduction of both NRP-1AT and ACE-2AT indicates a lower susceptibility of adipose tissue for SARS-CoV-2 after body weight reduction

    Disaster Olympix

    No full text

    Adipose retinol saturase is regulated by β-adrenergic signaling and its deletion impairs lipolysis in adipocytes and acute cold tolerance in mice

    No full text
    Objective: Retinol saturase (RetSat) is an endoplasmic reticulum-localized oxidoreductase highly expressed in organs involved in lipid metabolism such as white (WAT) and brown adipose tissue (BAT). Cold exposure was shown to increase RETSAT protein in BAT but its relevance for non-shivering thermogenesis, a process with beneficial effects on metabolic health, is unknown. Methods: We analyzed the regulation of RetSat expression in white and brown adipocytes and different murine adipose tissue depots upon β-adrenergic stimulation and cold exposure. RetSat function during the differentiation and β-adrenergic stimulation of brown adipocytes was dissected by loss-of-function experiments. Mice with BAT-specific deletion of RetSat were generated and exposed to cold. Gene expression in human WAT was analyzed and the effect of RetSat depletion on adipocyte lipolysis investigated. Results: We show that cold exposure induces RetSat expression in both WAT and BAT of mice via β-adrenergic signaling. In brown adipocytes, RetSat has minor effects on differentiation but is required for maximal thermogenic gene and protein expression upon β-adrenergic stimulation and mitochondrial respiration. In mice, BAT-specific deletion of RetSat impaired acute but not long-term adaptation to cold exposure. RetSat expression in subcutaneous WAT of humans correlates with the expression of genes related to mitochondrial function. Mechanistically, we found that RetSat depletion impaired β-agonist-induced lipolysis, a major regulator of thermogenic gene expression in adipocytes. Conclusions: Thus, RetSat expression is under β-adrenergic control and determines thermogenic capacity of brown adipocytes and acute cold tolerance in mice. Modulating RetSat activity may allow for therapeutic interventions towards pathologies with inadequate metabolic activity
    corecore