10 research outputs found

    Recent advances in segmental isotope labeling of proteins: NMR applications to large proteins and glycoproteins

    Get PDF
    In the last 15years substantial advances have been made to place isotope labels in native and glycosylated proteins for NMR studies and structure determination. Key developments include segmental isotope labeling using Native Chemical Ligation, Expressed Protein Ligation and Protein Trans-Splicing. These advances are pushing the size limit of NMR spectroscopy further making larger proteins accessible for this technique. It is just emerging that segmental isotope labeling can be used to define inter-domain interactions in NMR structure determination. Labeling of post-translational modified proteins like glycoproteins remains difficult but some promising developments were recently achieved. Key achievements are segmental and site-specific labeling schemes that improve resonance assignment and structure determination of the glycan moiety. We adjusted the focus of this perspective article to concentrate on the NMR applications based on recent developments rather than on labeling methods themselves to illustrate the considerable potential for biomolecular NM

    RNA sequence- and shape-dependent recognition by proteins in the ribonucleoprotein particle

    No full text
    At all stages of its life (from transcription to translation), an RNA transcript interacts with many different RNA-binding proteins. The composition of this supramolecular assembly, known as a ribonucleoprotein particle, is diverse and highly dynamic. RNA-binding proteins control the generation, maturation and lifespan of the RNA transcript and thus regulate and influence the cellular function of the encoded gene. Here, we review our current understanding of protein–RNA recognition mediated by the two most abundant RNA-binding domains (the RNA-recognition motif and the double-stranded RNA-binding motif) plus the zinc-finger motif, the most abundant nucleic-acid-binding domain. In addition, we discuss how not only the sequence but also the shape of the RNA are recognized by these three classes of RNA-binding protein

    A fly trap mechanism provides sequence-specific RNA recognition by CPEB proteins

    No full text
    Cytoplasmic changes in polyA tail length is a key mechanism of translational control and is implicated in germline development, synaptic plasticity, cellular proliferation, senescence, and cancer progression. The presence of a U-rich cytoplasmic polyadenylation element (CPE) in the 3â€Č untranslated regions (UTRs) of the responding mRNAs gives them the selectivity to be regulated by the CPE-binding (CPEB) family of proteins, which recognizes RNA via the tandem RNA recognition motifs (RRMs). Here we report the solution structures of the tandem RRMs of two human paralogs (CPEB1 and CPEB4) in their free and RNA-bound states. The structures reveal an unprecedented arrangement of RRMs in the free state that undergo an original closure motion upon RNA binding that ensures high fidelity. Structural and functional characterization of the ZZ domain (zinc-binding domain) of CPEB1 suggests a role in both protein–protein and protein–RNA interactions. Together with functional studies, the structures reveal how RNA binding by CPEB proteins leads to an optimal positioning of the N-terminal and ZZ domains at the 3â€Č UTR, which favors the nucleation of the functional ribonucleoprotein complexes for translation regulation.ISSN:0890-9369ISSN:1549-547

    Molecular basis of RNA recognition and TAP binding by the SR proteins SRp20 and 9G8

    No full text
    The sequence-specific RNA-binding proteins SRp20 and 9G8 are the smallest members of the serine- and arginine-rich (SR) protein family, well known for their role in splicing. They also play a role in mRNA export, in particular of histone mRNAs. We present the solution structures of the free 9G8 and SRp20 RNA recognition motifs (RRMs) and of SRp20 RRM in complex with the RNA sequence 5â€ČCAUC3â€Č. The SRp20-RNA structure reveals that although all 4 nt are contacted by the RRM, only the 5â€Č cytosine is primarily recognized in a specific way. This might explain the numerous consensus sequences found by SELEX (systematic evolution of ligands by exponential enrichment) for the RRM of 9G8 and SRp20. Furthermore, we identify a short arginine-rich peptide adjacent to the SRp20 and 9G8 RRMs, which does not contact RNA but is necessary and sufficient for interaction with the export factor Tip-associated protein (TAP). Together, these results provide a molecular description for mRNA and TAP recognition by SRp20 and 9G8

    The Solution Structure of the ADAR2 dsRBM-RNA Complex Reveals a Sequence-Specific Readout of the Minor Groove

    Get PDF
    SummarySequence-dependent recognition of dsDNA-binding proteins is well understood, yet sequence-specific recognition of dsRNA by proteins remains largely unknown, despite their importance in RNA maturation pathways. Adenosine deaminases that act on RNA (ADARs) recode genomic information by the site-selective deamination of adenosine. Here, we report the solution structure of the ADAR2 double-stranded RNA-binding motifs (dsRBMs) bound to a stem-loop pre-mRNA encoding the R/G editing site of GluR-2. The structure provides a molecular basis for how dsRBMs recognize the shape, and also more surprisingly, the sequence of the dsRNA. The unexpected direct readout of the RNA primary sequence by dsRBMs is achieved via the minor groove of the dsRNA and this recognition is critical for both editing and binding affinity at the R/G site of GluR-2. More generally, our findings suggest a solution to the sequence-specific paradox faced by many dsRBM-containing proteins that are involved in post-transcriptional regulation of gene expression
    corecore