11 research outputs found

    Renewable energy resource assessment

    Full text link
    © The Author(s) 2019. Literature overview of published global and regional renewable energy potential estimates. This section provides definitions for different types of RE potentials and introduces a new category, the economic renewable energy potential in space constrained environments. The potential for utility scale solar and onshore wind in square kilometre and maximum possible installed capacity (in GW) are provided for 75 different regions. The results set the upper limits for the deployment of solar- and wind technologies for the development of the 2.0 °C and 1.5 °C energy pathways

    Grand Challenges in Understanding the Interplay of Climate and Land Changes

    Get PDF
    Half of Earth’s land surface has been altered by human activities, creating various consequences on the climate and weather systems at local to global scales, which in turn affect a myriad of land surface processes and the adaptation behaviors. This study reviews the status and major knowledge gaps in the interactions of land and atmospheric changes and present 11 grand challenge areas for the scientific research and adaptation community in the coming decade. These land-cover and land-use change (LCLUC)-related areas include 1) impacts on weather and climate, 2) carbon and other biogeochemical cycles, 3) biospheric emissions, 4) the water cycle, 5) agriculture, 6) urbanization, 7) acclimation of biogeochemical processes to climate change, 8) plant migration, 9) land-use projections, 10) model and data uncertainties, and, finally, 11) adaptation strategies. Numerous studies have demonstrated the effects of LCLUC on local to global climate and weather systems, but these putative effects vary greatly in magnitude and even sign across space, time, and scale and thus remain highly uncertain. At the same time, many challenges exist toward improved understanding of the consequences of atmospheric and climate change on land process dynamics and services. Future effort must improve the understanding of the scale-dependent, multifaceted perturbations and feedbacks between land and climate changes in both reality and models. To this end, one critical cross-disciplinary need is to systematically quantify and better understand measurement and model uncertainties. Finally, LCLUC mitigation and adaptation assessments must be strengthened to identify implementation barriers, evaluate and prioritize opportunities, and examine how decision-making processes work in specific contexts

    Potentials, Consequences and Trade-Offs of Terrestrial Carbon Dioxide Removal: Strategies for Climate Engineering and Their Limitations

    No full text
    Die globalen Mitteltemperaturen könnten bis 2100 um 2 °C bis 4.5 °C ĂŒber vorindustriellem Wert steigen sollten CO2 Emissionen nicht oder nur unzureichend gesenkt werden. Klima-Engineering befasst sich deshalb mit der gezielten AbkĂŒhlung des Klimas, z.B. durch terrestrischen Kohlendioxidentzugs (tCDR). Insbesondere wird der Anbau von großflĂ€chigen Biomasseplantagen (BP) in Kombination mit der Erstellung von langlebigen Kohlenstoffprodukten wie Bioenergie oder Biokohle in Betracht gezogen. Die vorliegende Doktorarbeit untersucht die tCDR Potentiale und möglichen Konsequenzen von BP auf Nahrungsmittelproduktion, Ökosysteme und das Klima selbst mit Hilfe der Analyse von Landnutzungszenarien simuliert mit einem BiosphĂ€renmodell. Insgesamt wird das tCDR Potential von BP als gering befunden, unabhĂ€ngig vom Emissionsszenario und ab wann oder wie flĂ€chendeckend BP angebaut werden. DemgegenĂŒber stehen meist die zuvor genannten, ungewĂŒnschten Konsequenzen. In einem Szenario mit hohen CO2 Konzentrationen kann selbst unbeschrĂ€nkte LandverfĂŒgbarkeit fĂŒr tCDR die bisherigen Emissionen nicht ausgleichen. Anders jedoch, wenn gleichzeitig Emissionen eingespart. In beiden FĂ€llen fĂŒhren diese Landumwandlungen jedoch zu sehr hohen “Kosten” fĂŒr Ökosysteme und die Nahrungsmittelproduktion. Um deren Schutz zu gewĂ€hrleisten kann die LandverfĂŒgbarkeit fĂŒr tCDR beschrĂ€nkt werden, was jedoch die tCDR Potentiale trotz baldiger Etablierung sehr einschrĂ€nkt. Auch die Potentiale des RCP2.6 bleiben deutlich unter den Anforderungen. Das Potential könnte jedoch durch Erhöhung der Umwandlungseffizienzen von Biomasse, neuen Managementoptionen oder der Aufwertung degradierter FlĂ€chen durch BP erhöht werden. Diese Doktorarbeit kann abschließend nicht die Annahme unterstĂŒtzen, dass tCDR eine effektive und umweltfreundliche Methode der Kohlenstoffsequestrierung, und damit eine Ersetzung von strengen Mitigationspfaden, sein könnte

    Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology

    Get PDF
    International audienceLimiting global mean temperature changes to well below 2 ∘C likely requires a rapid and large-scale deployment of negative emission technologies (NETs). Assessments so far have shown a high potential of biomass-based terrestrial NETs, but only a few assessments have included effects of the commonly found nutrient-deficient soils on biomass production. Here, we investigate the deployment of enhanced weathering (EW) to supply nutrients to areas of afforestation-reforestation and naturally growing forests (AR) and bioenergy grasses (BG) that are deficient in phosphorus (P), besides the impacts on soil hydrology. Using stoichiometric ratios and biomass estimates from two established vegetation models, we calculated the nutrient demand of AR and BG. Insufficient geogenic P supply limits C storage in biomass. For a mean P demand by AR and a low-geogenic-P-supply scenario, AR would sequester 119 Gt C in biomass; for a high-geogenic-P-supply and low-AR-P-demand scenario, 187 Gt C would be sequestered in biomass; and for a low geogenic P supply and high AR P demand, only 92 Gt C would be accumulated by biomass. An average amount of ∌150 Gt basalt powder applied for EW would be needed to close global P gaps and completely sequester projected amounts of 190 Gt C during the years 2006-2099 for the mean AR P demand scenario (2-362 Gt basalt powder for the low-AR-P-demand and for the high-AR-P-demand scenarios would be necessary, respectively). The average potential of carbon sequestration by EW until 2099 is ∌12 Gt C (∌0.2-∌27 Gt C) for the specified scenarios (excluding additional carbon sequestration via alkalinity production). For BG, 8 kg basalt m-2 a-1 might, on average, replenish the exported potassium (K) and P by harvest. Using pedotransfer functions, we show that the impacts of basalt powder application on soil hydraulic conductivity and plant-available water, to close predicted P gaps, would depend on basalt and soil texture, but in general the impacts are marginal. We show that EW could potentially close the projected P gaps of an AR scenario and nutrients exported by BG harvest, which would decrease or replace the use of industrial fertilizers. Besides that, EW ameliorates the soil's capacity to retain nutrients and soil pH and replenish soil nutrient pools. Lastly, EW application could improve plant-available-water capacity depending on deployed amounts of rock powder - adding a new dimension to the coupling of land-based biomass NETs with EW

    Global Carbon and other Biogeochemical Cycles and Feedbacks

    Get PDF
    International audienc
    corecore