92 research outputs found

    Has hypertext come of age?

    Get PDF

    Sending the primary message

    Get PDF

    Consensus guidelines on analgesia and sedation in dying intensive care unit patients

    Get PDF
    BACKGROUND: Intensivists must provide enough analgesia and sedation to ensure dying patients receive good palliative care. However, if it is perceived that too much is given, they risk prosecution for committing euthanasia. The goal of this study is to develop consensus guidelines on analgesia and sedation in dying intensive care unit patients that help distinguish palliative care from euthanasia. METHODS: Using the Delphi technique, panelists rated levels of agreement with statements describing how analgesics and sedatives should be given to dying ICU patients and how palliative care should be distinguished from euthanasia. Participants were drawn from 3 panels: 1) Canadian Academic Adult Intensive Care Fellowship program directors and Intensive Care division chiefs (N = 9); 2) Deputy chief provincial coroners (N = 5); 3) Validation panel of Intensivists attending the Canadian Critical Care Trials Group meeting (N = 12). RESULTS: After three Delphi rounds, consensus was achieved on 16 statements encompassing the role of palliative care in the intensive care unit, the management of pain and suffering, current areas of controversy, and ways of improving palliative care in the ICU. CONCLUSION: Consensus guidelines were developed to guide the administration of analgesics and sedatives to dying ICU patients and to help distinguish palliative care from euthanasia

    Home-based lifestyle intervention for rural adults improves metabolic syndrome parameters and cardiovascular risk factors: A randomised controlled trial.

    Get PDF
    The presence of metabolic syndrome (MetS) increases the risk of developing type 2 diabetes and cardiovascular disease. Targeted interventions to reduce MetS for high risk populations are crucial for the prevention of these chronic diseases. This study evaluated the effectiveness of a 6-month home-based physical activity and diet intervention for rural adults with, or at risk of MetS. The randomised controlled trial was conducted in Albany and surrounding towns, Western Australia, 2014–2015. Participants were screened for MetS using the International Diabetes Federation criteria, and eligible participants were randomly assigned to the intervention (n = 201) or control (n = 200) group. The intervention group received printed and online programme materials and motivational support, and the control group was waitlisted to receive the programme after post-test data collection. Anthropometry, lipid profiles, glycaemic status, and blood pressure were measured at baseline and 6-months post-test. In total, 312 (77.8%) participants completed post-test data collection and were included in the anthropometric analysis, and 274 (68.3%) participants were included in the blood sample analysis.After controlling for confounders, the intervention group significantly improved their triglyceride (− 0.10 mM, p = 0.002), total cholesterol (− 0.09 mM, p = 0.02), and non-HDL cholesterol (− 0.08 mM, p = 0.02) concentrations compared to the control group. Waist circumference (− 2.11 cm, p = 0.03), waist-to-hip ratio (− 0.01, p = 0.04), weight (− 0.70 kg, p = 0.01), and body mass index (− 0.20 kg/m2, p < 0.001) were also improved. These findings suggest that comprehensive home-based prevention programmes that include a combination of dietary and physical activity interventions are a promising means to prevent the onset of chronic disease in rural adults

    Coding Variation in ANGPTL4, LPL, and SVEP1 and the Risk of Coronary Disease.

    Get PDF
    BACKGROUND: The discovery of low-frequency coding variants affecting the risk of coronary artery disease has facilitated the identification of therapeutic targets. METHODS: Through DNA genotyping, we tested 54,003 coding-sequence variants covering 13,715 human genes in up to 72,868 patients with coronary artery disease and 120,770 controls who did not have coronary artery disease. Through DNA sequencing, we studied the effects of loss-of-function mutations in selected genes. RESULTS: We confirmed previously observed significant associations between coronary artery disease and low-frequency missense variants in the genes LPA and PCSK9. We also found significant associations between coronary artery disease and low-frequency missense variants in the genes SVEP1 (p.D2702G; minor-allele frequency, 3.60%; odds ratio for disease, 1.14; P=4.2×10(-10)) and ANGPTL4 (p.E40K; minor-allele frequency, 2.01%; odds ratio, 0.86; P=4.0×10(-8)), which encodes angiopoietin-like 4. Through sequencing of ANGPTL4, we identified 9 carriers of loss-of-function mutations among 6924 patients with myocardial infarction, as compared with 19 carriers among 6834 controls (odds ratio, 0.47; P=0.04); carriers of ANGPTL4 loss-of-function alleles had triglyceride levels that were 35% lower than the levels among persons who did not carry a loss-of-function allele (P=0.003). ANGPTL4 inhibits lipoprotein lipase; we therefore searched for mutations in LPL and identified a loss-of-function variant that was associated with an increased risk of coronary artery disease (p.D36N; minor-allele frequency, 1.9%; odds ratio, 1.13; P=2.0×10(-4)) and a gain-of-function variant that was associated with protection from coronary artery disease (p.S447*; minor-allele frequency, 9.9%; odds ratio, 0.94; P=2.5×10(-7)). CONCLUSIONS: We found that carriers of loss-of-function mutations in ANGPTL4 had triglyceride levels that were lower than those among noncarriers; these mutations were also associated with protection from coronary artery disease. (Funded by the National Institutes of Health and others.).Supported by a career development award from the National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) (K08HL114642 to Dr. Stitziel) and by the Foundation for Barnes–Jewish Hospital. Dr. Peloso is supported by the National Heart, Lung, and Blood Institute of the NIH (award number K01HL125751). Dr. Kathiresan is supported by a Research Scholar award from the Massachusetts General Hospital, the Donovan Family Foundation, grants from the NIH (R01HL107816 and R01HL127564), a grant from Fondation Leducq, and an investigator-initiated grant from Merck. Dr. Merlini was supported by a grant from the Italian Ministry of Health (RFPS-2007-3-644382). Drs. Ardissino and Marziliano were supported by Regione Emilia Romagna Area 1 Grants. Drs. Farrall and Watkins acknowledge the support of the Wellcome Trust core award (090532/Z/09/Z), the British Heart Foundation (BHF) Centre of Research Excellence. Dr. Schick is supported in part by a grant from the National Cancer Institute (R25CA094880). Dr. Goel acknowledges EU FP7 & Wellcome Trust Institutional strategic support fund. Dr. Deloukas’s work forms part of the research themes contributing to the translational research portfolio of Barts Cardiovascular Biomedical Research Unit, which is supported and funded by the National Institute for Health Research (NIHR). Drs. Webb and Samani are funded by the British Heart Foundation, and Dr. Samani is an NIHR Senior Investigator. Dr. Masca was supported by the NIHR Leicester Cardiovascular Biomedical Research Unit (BRU), and this work forms part of the portfolio of research supported by the BRU. Dr. Won was supported by a postdoctoral award from the American Heart Association (15POST23280019). Dr. McCarthy is a Wellcome Trust Senior Investigator (098381) and an NIHR Senior Investigator. Dr. Danesh is a British Heart Foundation Professor, European Research Council Senior Investigator, and NIHR Senior Investigator. Drs. Erdmann, Webb, Samani, and Schunkert are supported by the FP7 European Union project CVgenes@ target (261123) and the Fondation Leducq (CADgenomics, 12CVD02). Drs. Erdmann and Schunkert are also supported by the German Federal Ministry of Education and Research e:Med program (e:AtheroSysMed and sysINFLAME), and Deutsche Forschungsgemeinschaft cluster of excellence “Inflammation at Interfaces” and SFB 1123. Dr. Kessler received a DZHK Rotation Grant. The analysis was funded, in part, by a Programme Grant from the BHF (RG/14/5/30893 to Dr. Deloukas). Additional funding is listed in the Supplementary Appendix.This is the author accepted manuscript. The final version is available from the Massachusetts Medical Society via http://dx.doi.org/10.1056/NEJMoa150765

    Comparative Transcriptional and Genomic Analysis of Plasmodium falciparum Field Isolates

    Get PDF
    Mechanisms for differential regulation of gene expression may underlie much of the phenotypic variation and adaptability of malaria parasites. Here we describe transcriptional variation among culture-adapted field isolates of Plasmodium falciparum, the species responsible for most malarial disease. It was found that genes coding for parasite protein export into the red cell cytosol and onto its surface, and genes coding for sexual stage proteins involved in parasite transmission are up-regulated in field isolates compared with long-term laboratory isolates. Much of this variability was associated with the loss of small or large chromosomal segments, or other forms of gene copy number variation that are prevalent in the P. falciparum genome (copy number variants, CNVs). Expression levels of genes inside these segments were correlated to that of genes outside and adjacent to the segment boundaries, and this association declined with distance from the CNV boundary. This observation could not be explained by copy number variation in these adjacent genes. This suggests a local-acting regulatory role for CNVs in transcription of neighboring genes and helps explain the chromosomal clustering that we observed here. Transcriptional co-regulation of physical clusters of adaptive genes may provide a way for the parasite to readily adapt to its highly heterogeneous and strongly selective environment
    corecore