248 research outputs found

    Superposition approach for description of electrical conductivity in sheared MWNT/polycarbonate melts

    Get PDF
    The theoretical description of electrical properties of polymer melts, filled with attractively interacting conductive particles, represents a great challenge. Such filler particles tend to build a network-like structure which is very fragile and can be easily broken in a shear flow with shear rates of about 1 s–1. In this study, measured shear-induced changes in electrical conductivity of polymer composites are described using a superposition approach, in which the filler particles are separated into a highly conductive percolating and low conductive non-percolating phases. The latter is represented by separated well-dispersed filler particles. It is assumed that these phases determine the effective electrical properties of composites through a type of mixing rule involving the phase volume fractions. The conductivity of the percolating phase is described with the help of classical percolation theory, while the conductivity of non-percolating phase is given by the matrix conductivity enhanced by the presence of separate filler particles. The percolation theory is coupled with a kinetic equation for a scalar structural parameter which describes the current state of filler network under particular flow conditions. The superposition approach is applied to transient shear experiments carried out on polycarbonate composites filled with multi-wall carbon nanotubes

    Effect of Graphite Nanoplate Morphology on the Dispersion and Physical Properties of Polycarbonate Based Composites

    Get PDF
    The influence of the morphology of industrial graphite nanoplate (GNP) materials on their dispersion in polycarbonate (PC) is studied. Three GNP morphology types were identified, namely lamellar, fragmented or compact structure. The dispersion evolution of all GNP types in PC is similar with varying melt temperature, screw speed, or mixing time during melt mixing. Increased shear stress reduces the size of GNP primary structures, whereby the GNP aspect ratio decreases. A significant GNP exfoliation to individual or few graphene layers could not be achieved under the selected melt mixing conditions. The resulting GNP macrodispersion depends on the individual GNP morphology, particle sizes and bulk density and is clearly reflected in the composite's electrical, thermal, mechanical, and gas barrier properties. Based on a comparison with carbon nanotubes (CNT) and carbon black (CB), CNT are recommended in regard to electrical conductivity, whereas, for thermal conductive or gas barrier application, GNP is preferred

    Establishment, morphology and properties of carbon nanotube networks in polymer melts

    Get PDF
    As for nanofillers in general, the properties of carbon nanotube (CNT) -polymer composites depend strongly on the filler arrangement and the structure of the filler network. This article reviews our actual understanding of the relation between processing conditions, state of CNT dispersion and structure of the filler network on the one hand, and the resulting electrical, melt rheological and mechanical properties, on the other hand. The as-produced rather compact agglomerates of CNTs (initial agglomerates, >1 μm), whose structure can vary for different tube manufacturers, synthesis and/or purification conditions, have first to be well dispersed in the polymer matrix during the mixing step, before they can be arranged to a filler network with defined physical properties by forming secondary agglomerates. Influencing factors on the melt dispersion of initial agglomerates of multi-walled CNTs into individualized tubes are discussed in context of dispersion mechanisms, namely the melt infiltration into initial agglomerates, agglomerate rupture and nanotube erosion from agglomerate surfaces. The hierarchical morphology of filler arrangement resulting from secondary agglomeration processes has been found to be due to a competition of build-up and destruction for the actual melt temperature and the given external flow field forces. Related experimental results from in-line and laboratory experiments and a model approach for description of shear-induced properties are presented

    The influence of injection molding parameters on electrical properties of PC/ABS-MWCNT nanocomposites

    Full text link
    [EN] The influence of injection molding parameters on electrical properties and morphology of PC/ABS-MWCNT nanocomposites is presented in this article. Investigation is based on the masterbatch of 5.0wt% carbon nanotubes obtained by melt-mixing. Further processing includes dilution of this nanocomposite to desired concentrations on twin-screw extruder and injection molding or direct dilution of masterbatch in injection molding. Additionally, reprocessing of materials formed by compression and injection molding is presented along with the change in electrical conductivity. Morphology differs strongly between the two processing paths showing change in agglomeration behavior between nanotubes concentrations. Electrical properties show dependence on injection velocity and melt temperature in both applied processing paths. Moreover, electrical conductivity recovery is proved after injection and compression molding.This work is funded by the European Community's Seventh Framework Program (FP7-PEOPLE-ITN-2008) within the CONTACT project Marie Curie Fellowship under grant number 238363. The authors would like to thank to Javier Gomez (SCIC, University Jaume I of Castellon) for support with electron microscopy measurements.Wegrzyn, M.; Juan Nadal, S.; Benedito, A.; Giménez Torres, E. (2013). The influence of injection molding parameters on electrical properties of PC/ABS-MWCNT nanocomposites. Journal of Applied Polymer Science. 130(3):2152-2158. https://doi.org/10.1002/app.39412S215221581303Pötschke, P., Dudkin, S. M., & Alig, I. (2003). Dielectric spectroscopy on melt processed polycarbonate—multiwalled carbon nanotube composites. Polymer, 44(17), 5023-5030. doi:10.1016/s0032-3861(03)00451-8Duong, H. M., Yamamoto, N., Bui, K., Papavassiliou, D. V., Maruyama, S., & Wardle, B. L. (2010). Morphology Effects on Nonisotropic Thermal Conduction of Aligned Single-Walled and Multi-Walled Carbon Nanotubes in Polymer Nanocomposites. The Journal of Physical Chemistry C, 114(19), 8851-8860. doi:10.1021/jp102138cLee, S. H., Kim, J. H., Choi, S. H., Kim, S. Y., Kim, K. W., & Youn, J. R. (2009). Effects of filler geometry on internal structure and physical properties of polycarbonate composites prepared with various carbon fillers. Polymer International, 58(4), 354-361. doi:10.1002/pi.2532Mari, D., & Schaller, R. (2009). Mechanical spectroscopy in carbon nanotube reinforced ABS. Materials Science and Engineering: A, 521-522, 255-258. doi:10.1016/j.msea.2008.09.102Krause, B., Pötschke, P., & Häußler, L. (2009). Influence of small scale melt mixing conditions on electrical resistivity of carbon nanotube-polyamide composites. Composites Science and Technology, 69(10), 1505-1515. doi:10.1016/j.compscitech.2008.07.007Villmow, T., Pegel, S., Pötschke, P., & Wagenknecht, U. (2008). Influence of injection molding parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon nanotubes. Composites Science and Technology, 68(3-4), 777-789. doi:10.1016/j.compscitech.2007.08.031Richter, S., Saphiannikova, M., Jehnichen, D., Bierdel, M., & Heinrich, G. (2009). Experimental and theoretical studies of agglomeration effects in multi-walled carbon nanotube-polycarbonate melts. Express Polymer Letters, 3(12), 753-768. doi:10.3144/expresspolymlett.2009.94Pegel, S., Pötschke, P., Petzold, G., Alig, I., Dudkin, S. M., & Lellinger, D. (2008). Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer, 49(4), 974-984. doi:10.1016/j.polymer.2007.12.024Park, D. H., Yoon, K. H., Park, Y.-B., Lee, Y. S., Lee, Y. J., & Kim, S. W. (2009). Electrical resistivity of polycarbonate/multiwalled carbon nanotube composites under varying injection molding conditions. Journal of Applied Polymer Science, 113(1), 450-455. doi:10.1002/app.29989Lellinger, D., Xu, D., Ohneiser, A., Skipa, T., & Alig, I. (2008). Influence of the injection moulding conditions on the in-line measured electrical conductivity of polymer-carbon nanotube composites. physica status solidi (b), 245(10), 2268-2271. doi:10.1002/pssb.200879619Tiusanen, J., Vlasveld, D., & Vuorinen, J. (2012). Review on the effects of injection moulding parameters on the electrical resistivity of carbon nanotube filled polymer parts. Composites Science and Technology, 72(14), 1741-1752. doi:10.1016/j.compscitech.2012.07.009Mahmoodi, M., Arjmand, M., Sundararaj, U., & Park, S. (2012). The electrical conductivity and electromagnetic interference shielding of injection molded multi-walled carbon nanotube/polystyrene composites. Carbon, 50(4), 1455-1464. doi:10.1016/j.carbon.2011.11.004Yang, L., Liu, F., Xia, H., Qian, X., Shen, K., & Zhang, J. (2011). Improving the electrical conductivity of a carbon nanotube/polypropylene composite by vibration during injection-moulding. Carbon, 49(10), 3274-3283. doi:10.1016/j.carbon.2011.03.054Li, S.-N., Li, B., Li, Z.-M., Fu, Q., & Shen, K.-Z. (2006). Morphological manipulation of carbon nanotube/polycarbonate/polyethylene composites by dynamic injection packing molding. Polymer, 47(13), 4497-4500. doi:10.1016/j.polymer.2006.04.051Chandra , A. Kramschuster , A. J. Hu , X. Turng , S. Proc Annual Technical Conference of the Society of Plastics Engineers 2007 3 2184Zhang, H., & Zhang, Z. (2007). Impact behaviour of polypropylene filled with multi-walled carbon nanotubes. European Polymer Journal, 43(8), 3197-3207. doi:10.1016/j.eurpolymj.2007.05.010Rios, P. F., Ophir, A., Kenig, S., Efrati, R., Zonder, L., & Popovitz-Biro, R. (2010). Impact of injection-molding processing parameters on the electrical, mechanical, and thermal properties of thermoplastic/carbon nanotube nanocomposites. Journal of Applied Polymer Science, 120(1), 70-78. doi:10.1002/app.32983Cipriano, B. H., Kota, A. K., Gershon, A. L., Laskowski, C. J., Kashiwagi, T., Bruck, H. A., & Raghavan, S. R. (2008). Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing. Polymer, 49(22), 4846-4851. doi:10.1016/j.polymer.2008.08.05

    Morphology, Mechanical Performance and Nanoindentation Behavior of Injection Molded PC/ABS-MWCNT Nanocomposites

    Full text link
    "This is the peer reviewed version of the following article: Wegrzyn, M., Sahuquillo, O., Benedito, A., & Gimenez, E. (2015). Morphology, mechanical performance, and nanoindentation behavior of injection molded PC/ABS‐MWCNT nanocomposites. Journal of Applied Polymer Science, 132(22), which has been published in final form at https://doi.org/10.1002/app.42014. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] In this work, nanocomposites of polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) with various loads of multiwall carbon nanotubes (MWCNT) are investigated. Material is previously formed by masterbatch dilution approach and further processed by injection molding at various velocities. Microscopic characterization of nanocomposites morphology reveals stronger dependence of MWCNT dispersion on processing parameters at higher nanofiller load. Dispersion of carbon nanotubes at various distances from the injection gate is studied by Raman spectroscopy showing lower deviation at elevated injection velocity. Nanoindentation results that are in agreement with uniaxial tensile testing show a slight decrease of nanocomposites¿ mechanical performance at 3.0 wt % MWCNT in samples injected at reduced velocity. This is explained by the increase of agglomeration behavior at these conditions.This work is funded by the European Community's Seventh Framework Program (FP7-PEOPLE-ITN-2008) within the CONTACT project Marie Curie Fellowship under grant number 238363.Wegrzyn, M.; Sahuquillo, O.; Benedito, A.; Giménez Torres, E. (2015). Morphology, Mechanical Performance and Nanoindentation Behavior of Injection Molded PC/ABS-MWCNT Nanocomposites. Journal of Applied Polymer Science. 132(22):1-8. https://doi.org/10.1002/app.42014S1813222Alig, I., Lellinger, D., Engel, M., Skipa, T., & Pötschke, P. (2008). Destruction and formation of a conductive carbon nanotube network in polymer melts: In-line experiments. Polymer, 49(7), 1902-1909. doi:10.1016/j.polymer.2008.01.073Sathyanarayana, S., Wegrzyn, M., Olowojoba, G., Benedito, A., Gimenez, E., Huebner, C., & Henning, F. (2013). Multiwalled carbon nanotubes incorporated into a miscible blend of poly(phenylenether)/polystyrene – Processing and characterization. Express Polymer Letters, 7(7), 621-635. doi:10.3144/expresspolymlett.2013.59Xiong, Z.-Y., Wang, L., Sun, Y., Guo, Z.-X., & Yu, J. (2013). Migration of MWCNTs during melt preparation of ABS/PC/MWCNT conductive composites via PC/MWCNT masterbatch approach. Polymer, 54(1), 447-455. doi:10.1016/j.polymer.2012.11.044Sun, Y., Guo, Z.-X., & Yu, J. (2010). Effect of ABS Rubber Content on the Localization of MWCNTs in PC/ABS Blends and Electrical Resistivity of the Composites. Macromolecular Materials and Engineering, 295(3), 263-268. doi:10.1002/mame.200900242Göldel, A., Kasaliwal, G. R., Pötschke, P., & Heinrich, G. (2012). The kinetics of CNT transfer between immiscible blend phases during melt mixing. Polymer, 53(2), 411-421. doi:10.1016/j.polymer.2011.11.039Tiusanen, J., Vlasveld, D., & Vuorinen, J. (2012). Review on the effects of injection moulding parameters on the electrical resistivity of carbon nanotube filled polymer parts. Composites Science and Technology, 72(14), 1741-1752. doi:10.1016/j.compscitech.2012.07.009Ma, P.-C., Siddiqui, N. A., Marom, G., & Kim, J.-K. (2010). Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites Part A: Applied Science and Manufacturing, 41(10), 1345-1367. doi:10.1016/j.compositesa.2010.07.003Sathyanarayana, S., Olowojoba, G., Weiss, P., Caglar, B., Pataki, B., Mikonsaari, I., … Henning, F. (2012). Compounding of MWCNTs with PS in a Twin-Screw Extruder with Varying Process Parameters: Morphology, Interfacial Behavior, Thermal Stability, Rheology, and Volume Resistivity. Macromolecular Materials and Engineering, 298(1), 89-105. doi:10.1002/mame.201200018Pegel, S., Pötschke, P., Petzold, G., Alig, I., Dudkin, S. M., & Lellinger, D. (2008). Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer, 49(4), 974-984. doi:10.1016/j.polymer.2007.12.024Villmow, T., Pegel, S., Pötschke, P., & Wagenknecht, U. (2008). Influence of injection molding parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon nanotubes. Composites Science and Technology, 68(3-4), 777-789. doi:10.1016/j.compscitech.2007.08.031Richter, S., Saphiannikova, M., Jehnichen, D., Bierdel, M., & Heinrich, G. (2009). Experimental and theoretical studies of agglomeration effects in multi-walled carbon nanotube-polycarbonate melts. Express Polymer Letters, 3(12), 753-768. doi:10.3144/expresspolymlett.2009.94Park, D. H., Yoon, K. H., Park, Y.-B., Lee, Y. S., Lee, Y. J., & Kim, S. W. (2009). Electrical resistivity of polycarbonate/multiwalled carbon nanotube composites under varying injection molding conditions. Journal of Applied Polymer Science, 113(1), 450-455. doi:10.1002/app.29989Chandra , A. Kramschuster , A. J. Hu , X. Turng , S. 2007 2184Lellinger, D., Xu, D., Ohneiser, A., Skipa, T., & Alig, I. (2008). Influence of the injection moulding conditions on the in-line measured electrical conductivity of polymer-carbon nanotube composites. physica status solidi (b), 245(10), 2268-2271. doi:10.1002/pssb.200879619Li, S.-N., Li, B., Li, Z.-M., Fu, Q., & Shen, K.-Z. (2006). Morphological manipulation of carbon nanotube/polycarbonate/polyethylene composites by dynamic injection packing molding. Polymer, 47(13), 4497-4500. doi:10.1016/j.polymer.2006.04.051Schuh, C. A. (2006). Nanoindentation studies of materials. Materials Today, 9(5), 32-40. doi:10.1016/s1369-7021(06)71495-xOliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(6), 1564-1583. doi:10.1557/jmr.1992.1564Cakmak, U. D., Schöberl, T., & Major, Z. (2011). Nanoindentation of polymers. Meccanica, 47(3), 707-718. doi:10.1007/s11012-011-9481-6VanLandingham, M. R., Villarrubia, J. S., Guthrie, W. F., & Meyers, G. F. (2001). Nanoindentation of polymers: an overview. Macromolecular Symposia, 167(1), 15-44. doi:10.1002/1521-3900(200103)167:13.0.co;2-tPharr, G. M., Strader, J. H., & Oliver, W. C. (2009). Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. Journal of Materials Research, 24(3), 653-666. doi:10.1557/jmr.2009.0096Yao, C.-K., Liao, J.-D., Chung, C.-W., Sung, W.-I., & Chang, N.-J. (2012). Porous chitosan scaffold cross-linked by chemical and natural procedure applied to investigate cell regeneration. Applied Surface Science, 262, 218-221. doi:10.1016/j.apsusc.2012.05.128Sonnenfeld, A., Roth, C., Dimitrova, Z., Spillmann, A., & von Rohr, P. R. (2009). Plasma Enhanced Chemical Vapor Deposition on Particulate Solid-State Materials for Improved Powder Processing. Plasma Processes and Polymers, 6(S1), S860-S863. doi:10.1002/ppap.200932202Shokrieh, M. M., Hosseinkhani, M. R., Naimi-Jamal, M. R., & Tourani, H. (2013). Nanoindentation and nanoscratch investigations on graphene-based nanocomposites. Polymer Testing, 32(1), 45-51. doi:10.1016/j.polymertesting.2012.09.001Chakraborty, H., Sinha, A., Mukherjee, N., Ray, D., & Protim Chattopadhyay, P. (2013). A study on nanoindentation and tribological behaviour of multifunctional ZnO/PMMA nanocomposite. Materials Letters, 93, 137-140. doi:10.1016/j.matlet.2012.11.075Shen, L., Phang, I. Y., Liu, T., & Zeng, K. (2004). Nanoindentation and morphological studies on nylon 66/organoclay nanocomposites. II. Effect of strain rate. Polymer, 45(24), 8221-8229. doi:10.1016/j.polymer.2004.09.062Wegrzyn, M., Juan, S., Benedito, A., & Giménez, E. (2013). The influence of injection molding parameters on electrical properties of PC/ABS-MWCNT nanocomposites. Journal of Applied Polymer Science, 130(3), 2152-2158. doi:10.1002/app.39412Briscoe, B. J., Fiori, L., & Pelillo, E. (1998). Nano-indentation of polymeric surfaces. Journal of Physics D: Applied Physics, 31(19), 2395-2405. doi:10.1088/0022-3727/31/19/006Vega, J. F., Martínez-Salazar, J., Trujillo, M., Arnal, M. L., Müller, A. J., Bredeau, S., & Dubois, P. (2009). Rheology, Processing, Tensile Properties, and Crystallization of Polyethylene/Carbon Nanotube Nanocomposites. Macromolecules, 42(13), 4719-4727. doi:10.1021/ma900645fBokobza, L., & Zhang, J. (2012). Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polymer Letters, 6(7), 601-608. doi:10.3144/expresspolymlett.2012.63Gupta, M., & Wang, K. K. (1993). Fiber orientation and mechanical properties of short-fiber-reinforced injection-molded composites: Simulated and experimental results. Polymer Composites, 14(5), 367-382. doi:10.1002/pc.750140503Abbasi, S., Carreau, P. J., & Derdouri, A. (2010). Flow induced orientation of multiwalled carbon nanotubes in polycarbonate nanocomposites: Rheology, conductivity and mechanical properties. Polymer, 51(4), 922-935. doi:10.1016/j.polymer.2009.12.041Sahin, S., & Yayla, P. (2005). Effects of testing parameters on the mechanical properties of polypropylene random copolymer. Polymer Testing, 24(5), 613-619. doi:10.1016/j.polymertesting.2005.03.002Chasiotis, I., Chen, Q., Odegard, G. M., & Gates, T. S. (2005). Structure-property relationships in polymer composites with micrometer and submicrometer graphite platelets. Experimental Mechanics, 45(6), 507-516. doi:10.1007/bf02427904Penumadu, D., Dutta, A., Pharr, G. M., & Files, B. (2003). Mechanical properties of blended single-wall carbon nanotube composites. Journal of Materials Research, 18(8), 1849-1853. doi:10.1557/jmr.2003.025

    Role of processing history on the mechanical and electrical behavior of melt-compounded polycarbonate-multiwalled carbon nanotube nanocomposites

    Get PDF
    This work investigates the effects of primary compounding temperature and secondary melt processes on the mechanical response and electrical resistivity of polycarbonate filled with 3 wt % multiwalled carbon nanotubes (CNT). Nanocomposites were melt compounded in an industrial setting at a range of temperatures, and subsequently either injection molded or compression molded to produce specimens for the measurement of electrical resistivity, surface hardness, and uniaxial tensile properties. Secondary melt processing was found to be the dominant process in determining the final properties. The effects observed have been attributed to structural arrangements of the CNT network as suggested by morphological evidence of optical microscopy and resistivity measurements. Properties were found to be relatively insensitive to compounding temperature. The measured elastic moduli were consistent with existing micromechanical models
    corecore