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Abstract. The theoretical description of electrical properties of polymer melts, filled with attractively interacting conduc-
tive particles, represents a great challenge. Such filler particles tend to build a network-like structure which is very fragile
and can be easily broken in a shear flow with shear rates of about 1 s7!. In this study, measured shear-induced changes in
electrical conductivity of polymer composites are described using a superposition approach, in which the filler particles are
separated into a highly conductive percolating and low conductive non-percolating phases. The latter is represented by sep-
arated well-dispersed filler particles. It is assumed that these phases determine the effective electrical properties of compos-
ites through a type of mixing rule involving the phase volume fractions. The conductivity of the percolating phase is
described with the help of classical percolation theory, while the conductivity of non-percolating phase is given by the
matrix conductivity enhanced by the presence of separate filler particles. The percolation theory is coupled with a kinetic
equation for a scalar structural parameter which describes the current state of filler network under particular flow condi-
tions. The superposition approach is applied to transient shear experiments carried out on polycarbonate composites filled

with multi-wall carbon nanotubes.
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1. Introduction

Polymer nanocomposites, filled with attractively
interacting conductive anisometric particles such as
carbon nanotubes (CNT), graphite nano-platelets or
graphenes, are not only in the focus of industrial
interest due to numerous possible applications but
also draw serious attention from academic research
as new functional materials having unique physical
properties. So, it is well-known that a minute amount
of CNT additive can turn an electrically insulating
polymer material into a conductive composite [1—
4]. On the other hand, addition of CNT fillers can
lead to a noticeable mechanical reinforcement [5,
6]. The high conductivity in CNT-based composite
materials can be ascribed to the formation of the
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percolation network of interconnected filler parti-
cles which may transfer electric current, as well as
mechanical stress [7-9]. As discussed in literature
[10, 11] very small inter-particle distances (~few nm)
are needed for low contact resistance and efficient
electron transport through the conductive filler net-
work. Therefore, it is not surprising that the perco-
lation network is found to be very fragile, as it can
be easily broken under steady shear flow with shear
rates of about 1 s7' [12, 13]. The shear-induced rup-
ture of filler network represents currently a main
obstacle to the widespread introduction of CNT-
based polymer nanocomposite products into every-
day life. This is because the dominating industrial
process for their production is the melt processing
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of polymers via extrusion or injection moulding,
both processes being characterized by extremely
high shear rates. To overcome this impediment, it is
necessary to understand and to learn to predict tran-
sient electric properties of the sheared polymer
nanocomposites. This task is important for indus-
trial applications and very interesting and challeng-
ing from the theoretical point of view.

Electrical properties of polymer nanocomposites,
filled with attractively interacting conductive aniso-
metric particles, strongly depend on the morphol-
ogy of filler network [14, 15] as well as on the ori-
entation state of individual particles [16, 17]. There-
fore, one finds in literature two different approaches
for the modelling of the electric properties of those
composites. The first approach considers compos-
ites in which anisometric conductive particles are
randomly distributed in a slightly conducting matrix.
Assuming that filler particles do not interact with
each other, it is possible to derive the effective elec-
trical conductivity tensor if the second order orien-
tation tensor is known [18]. One of the advantages
of this approach is that it naturally accounts for the
time evolution of anisotropic conductivity if the
time dependence of orientation tensor can be deter-
mined (for example by the Folgar-Tucker equation
[19, 20]).

The second approach considers composites in which
conductive fillers are randomly distributed (and
randomly oriented if anisometric) in a non-conduct-
ing matrix. The insulator-to-conductor transition in
such systems is induced by the formation of a per-
colation path, once the filler content has reached a
threshold critical value [21, 22]. Several percolation
models generally applicable to isotropic conductive
systems have been elaborated: the Swiss Cheese
(random void) model and its extensions [23-25], the
nodes-links-blobs model [26, 27], Stinchcombe the-
ory on a Bethe lattice [28]. As percolation models
are static ones, they are only applicable to homoge-
neous systems with statistically distributed filler in
the equilibrium state. An anisotropic generalization
of the Stinchcombe’s approach [28], proposed
recently by Semeriyanov ef al. [29], aims at the
description of percolation networks with anisotropic
local conductivity represented by resistors with
direction-dependent electrical conductivity. Such
anisotropy may arise for example from strong shear-
ing of the filler network built from elongated con-

ductive particles. Similar to other percolation theo-
ries, this newest approach lacks information on time
— and shear-dependence of resistor conductivity.

A very promising numerical approach to the electri-
cal conductivity of static and sheared CNT/polymer
suspensions has been reported recently by Eken et
al. [30, 31]. Composite microstructures were gener-
ated using a fiber-level simulation method, in which
monodisperse fibers (carbon nanotubes) are mod-
eled as a sequence of connected rigid cylinders. The
values of electrical conductivity can be determined
from generated microstructures using a resistor net-
work algorithm. It has been shown that if a weak
shear flow is applied to a viscous fiber suspension,
the electric percolation threshold decreases due to
shear-induced formation of conductive aggregates
[30]. Increasing shear rate has a negative effect on
conductive network formation: when shear rate
exceeds a critical value the electrical conductivity
was found to decrease to the matrix conductivity
[31]. For lack of transient percolation theories, we
proposed recently a phenomenological approach, in
which time and shear-dependence of electrical con-
ductivity is accounted for by coupling percolation
theory with an appropriate kinetic equation for build-
up and destruction of conductive agglomerates [12,
13]. To our knowledge, agglomeration of nanoparti-
cles in a polymer matrix was first discussed by
Schueler ef al. [32, 33] for carbon black in uncured
epoxy. Heinrich et al. [34] proposed agglomeration
of layered nanofillers in a thermoplastic or rubber
matrix along with a kinetic equation for description
of the time evolution of the shear modulus. In our
first simplified approach [12, 13] we assumed, that
the ‘percolation’ path is formed by sphere-like con-
ductive agglomerates, containing loosely packed
CNTs. These agglomerates can be formed or
destroyed in shear flow [35, 36]. For steady shear
conditions constant values for the electrical conduc-
tivity and the dynamic shear modulus were found,
indicating a stationary state of the filler network
due to the competition of shear-induced build up
and destruction [35, 36]. In the quiescent state of
melt the destroyed agglomerates were found earlier
to be rebuilt in the process of quiescent agglomera-
tion [12—15]. As stated already in [36], for a more
realistic description of the filler network and its
dependence on the thermo-rheological history a
‘superstructure’ has to be taken into account, e.g. a
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distribution of agglomerate sizes or a spinodal-type
superstructure. In particular, for description of the
time-dependent electrical conductivity a hierarchi-
cal model [36] assuming different types of agglom-
erated has been used to fit the experimental data. In
the previous studies [36-38] the coupling approach
has been tested using either the classical percolation
theory [39] or the Generalized Effective Medium
(GEM) approximation [40].

Here we present a different superposition approach
in which the filler particles are assumed to be sepa-
rated into percolating and non-percolating phases.
In terms of our previous works, the percolating phase
can be understood as an ‘agglomerate-rich’ or as a
conductive phase in ‘spinodal decomposition’. The
conductivity of the percolating phase is described
with the help of a coupling approach based on the
classic percolation theory. Additionally, we take
into account the enhancement of matrix conductiv-
ity by the presence of separate filler particles com-
posing the non-percolating phase. For the sake of
simplicity, it is assumed that the particles are ori-
ented randomly. This is valid at least for moderate
shear rates, less than 103 s7! (see e.g. [12, 13, 41]).
The superposition approach is tested on polycar-
bonate composites filled with multi-walled CNTs at
different temperatures. Filler amounts are chosen to
be quite close to the percolation threshold, where
the effect of shear-induced rupture of filler network
is well pronounced [37].

2. Experimental

Polycarbonate, Macrolon® type 2600, was pro-
duced by Bayer Material Science AG, Germany.
The polymer is of linear structure and amorphous
according to the manufacturer specification. The
multi-walled carbon nanotubes used in this study
were Baytubes® from Bayer Material Science AG
with max. 5% inorganic impurities. The mean outer
diameter is of about 13—16 nm and the tube length
varies between 1 and 10 pm.

The MWNT-polycarbonate samples [37] were pro-
vided by Bayer Technology Sevice GmbH Lever-
kusen, Germany. The compounds were produced by
melt-mixing in a twin screw extruder (ZSK 26 MC
from Coperion Werner & Pfleiderer, Stuttgart, Ger-
many) in one processing step. Both, the polycarbon-
ate and the MWNTs were fed into the main feeder
of the extruder. After compounding, the MWNT-

polycarbonate composites were cooled down in a
water bath and were finally granulated with a pel-
letizer. The granulates were used to prepare disk-
shaped CNT-polycarbonate plates with a diameter
of 80 mm and a thickness of 2 mm by injection
molding technique at the Thermoplastic Testing
Center of Bayer Material Science AG, Leverkusen,
Germany. During the injection molding the melt
temperature was held at 340°C, the mold tempera-
ture was held at 120°C. The flow rate during the
filling process was set to approximately 5 cm?/s.

For the conductivity measurements round samples
of 25 mm diameter and of 2 mm thickness were cut
from the mould injected plates. The time-dependent
dielectric measurements were performed using a
Novocontrol impedance analyser coupled with a
laboratory rheometer (Ares, Rheometric Scientific),
in which the rheometer plates are equipped with
ring electrodes (inner diameter 19 mm, outer diam-
eter 25 mm) [12, 13, 35, 36]. The setup with ring
electrodes ensures a relatively narrow distribution
of the shear rates in the relevant region of electrical
field during steady rotation. In the present study a
tangential steady shear was applied to the melt by
rotating the lower rheometer plate. The electrical
conductivity was measured perpendicular to the
direction of applied shear. This allowed monitoring
of the electrical conductivity in the volume between
the two ring electrodes. The conductivity measure-
ments were performed at a single frequency of
1 kHz, which is considered to be representative for
the DC conductivity [12]. The rheometer is equipped
with an oven which maintained stable temperature
of the composite melt during the measurements.

3. Model description

3.1. Electrical conductivity

To describe shear-induced changes in the electrical
conductivity of a polymer melt filled with attrac-
tively interacting conductive particles, we propose
to use a superposition approach similar to that
applied by us recently for description of viscoelas-
tic properties of the same nanocomposite system
[42]. In the framework of superposition approach
we assume that the filler particles can be divided
into the percolating and non-percolating phases (see
Figure 1).

The percolating phase (network) consists of a group
of clusters that are not very far from each other.
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Figure 1. Schematic representation of the time-evolution of
filler structure in strong shear flow: (a) initial un-
destroyed state; (b) intermediate two-phase state,
in which the percolating phase is represented by
the connected filler clusters and the non-percolat-
ing phase by separate well-dispersed particles;
(c) final destroyed state, in which all particles are
well-dispersed and not connected with one another.
Also are shown corresponding values of the param-
eter f, describing the fraction of free nanotubes.

Shear reduces the number of nanotubes in the per-
colating phase by rupture of nanotubes from the
clusters, breaking large clusters into smaller ones
and by distributing the clusters evenly in space. All
these processes are effectively reducing the fraction
of nanotubes that belong to the clusters initially
forming a conducting path. The total electrical con-
ductivity, o, can be then represented as a sum of two
terms (Equation (1)):

o= X(Now(T) + onec(T, /) (1)

where op(7) is the temperature-dependent matrix
conductivity and one(7, f) is the conductivity of
percolating phase (network); it is equal to zero, if
the system is below the electric percolation thresh-
old. A parallel connection of the matrix and perco-
lating network conductivities as described by Equa-
tion (1) insures high values of nanocomposite con-
ductivity ¢ above the percolation threshold. Contrary,
a connection ‘in series’ would result in very low
values of ¢ comparable with the value of matrix
conductivity oy. In Equation (1) f'is the fraction of
free nanotubes, i.e. of nanotubes not belonging to
the percolating phase, and, correspondingly, 1 —f
describes the fraction of nanotubes in the percolat-
ing phase.

A quite similar superposition approach to the elec-
trical conductivity of CNT/polymer composites has
been proposed in the studies of Bruck and co-work-
ers [43, 44]. The total electrical conductivity of
MWNT/polystyrene composites in these studies
was represented as a sum of two terms: the temper-

ature-independent polystyrene conductivity and the
conductivity of percolating phase described by a
conventional power-law relationship. To model the
conductivity increase due to thermal annealing
[44], the authors assumed that the effective volume
fraction of percolated particles increases with
annealing time according to a stretched exponential
law, in which the characteristic relaxation time is
assumed to obey the Arrhenius temperature depend-
ence. The main difference between the approach of
Bruck and co-workers [43, 44] and our approach is
that the first approach neglects the contribution of
non-percolating particles to the total composite
conductivity, while we take this contribution explic-
itly into account by considering a reinforced matrix
conductivity described by the first term on the right
side of Equation (1). Besides, there is no shear
dependence of the effective volume fraction of per-
colated particles in the first superposition approach,
as the authors have only considered the effect of
thermal annealing on the composite conductivity
[44]. In our study the time evolution of the fraction
of percolated nanotubes due to shearing is taken
explicitly into account by introducing an appropri-
ate kinetic equation (see section 3.2).

The electric enhancement factor, X, in Equation (1)
can be calculated for the case of strong contrast, i.e.
when the particle conductivity is considerably larger
than the polymer conductivity, according to the
Equation (2) [18]:

1+ 3L

X =1+500 -1

S (2)
Here ¢ is the volume fraction of particles (here
CNTs), fo is the volume fraction of free particles
and L = In#/#? is the depolarization factor defined by
the aspect ratio of rigid conductive particle, 7. Equa-
tion (2) has been obtained from a general expres-
sion for the effective electrical conductivity tensor
(see Equation (12) in ref. [18]) of composites with
rod-like conductive inclusions in a slightly conduc-
tive matrix. This expression is valid at sufficiently
low volume fractions of nanoparticles, when they
do not yet percolate. In the case of random orienta-
tion distribution of rod-like inclusions one obtains
the isotropic conductivity of composite which is
proportional to the isotropic matrix conductivity
with the coefficient of proportionality given by
Equation (2).
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Fitting the viscoelastic data for the same MWNT-
polycarbonate composite, we found that the aver-
age aspect ratio of the multi-wall carbon nanotubes
is about 40 [42]. This value roughly corresponds to
the ratio of the Kuhn segment length, reported for
the carbon nanotubes to be about 1 um [45], to the
nanotube diameter (13—16 nm). This gives the
depolarization factor L= 2:107 << 1, and thus
Equation (2) can be reduced to Equation (3):

1
X() =1+ /¢ G

The electrical conductivity of polycarbonate matrix
is an ionic type of conductivity and thus strongly
increases with temperature. We found that it obeys
the Arrhenius law in the region of melt temperatures
between 200 and 260°C (see Figure 2a) (Equa-
tion (4)):

() = exp( - %) @

with opy = 5.78:10* S/m and E, =1.88-10"° J. In
Equation (4) T is the absolute temperature, kg =
1.381:10723 J/K is the Boltzmann constant. This
gives oy= 10°S/m at 230°C and oy=
1.29-1077 S/m at 340°C.

The conductivity of percolating network (phase) in
Equation (1) is described by a classical percolation
equation (Equation (5)):

0 P=p.
O-Net = p _p t (5)
s (5=2) p>»

where p is the probability of bond occupation by
electrical resistors and p. is the percolation thresh-

10’6 T T T T T

107 F 3
E
o 10 ¢ E
5

10° | E

10—10 L I L 1 L

14 186 1.8 20 22 24 26

a) T10° [1/K]

old, at which a cluster (connected group of occu-
pied bonds) spans the whole system. The percola-
tion threshold is a nonuniversal quantity that depends
on the space dimension, lattice structure and other
microscopic details, e.g. interactions [46, 47]. The
conductivity critical exponent ¢ is taken to be equal 2
which is a typical value for three dimensional sys-
tems [39]. This value has been found for melt
processed MWNT-polycarbonate composites [2].
The conductivity of perfect network, oy, i.e. the
value of oner at p = 1 in Equation (5), has been
extracted from the equilibrium values of electrical
conductivity (i.e. in the absence of shear) for a
series of samples with the weight fraction of carbon
nanotubes ® =1 wt%. It has been found that ot is
temperature-dependent and obeying as well an
Arrhenius law in the region of melt temperatures
between 200 and 295°C (see Figure 2b) (Equa-
tion (6)):

E
o T) = o%(T) exp(— kT) ©

with E,=6.76:102° J and 6% = 5.53-107 S/m. This
gives or= 3.25:10°S/m at 230°C and o=
1.87-10* S/m at 340°C. Arrhenius dependence in
Equation (6) points on hopping mechanism of elec-
tric conductivity.

3.2. Kinetic equation

It is assumed that the percolating structure is stabi-
lized by a number of physical bonds that can be
broken (or built up) by shearing in a nonlinear
regime and can be again re-built during the quies-
cent time. In our case these physical bonds repre-
sent effective attractive interactions between the
multi-wall carbon nanotubes. As the total number

105 T T T — —T T T

104 =
E
o
S

10° £

10’2 L L L I

1.4 16 1.8 20 22 24

b) T110° [1/K]

Figure 2. Temperature dependence of the matrix conductivity oy (), of the conductivity of perfect network o¢ (b).
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of particles — bound ones in the percolating phase
and free ones in the non-percolating phase — is not
changing, a usual kinetic equation can be written
for the change of the fraction of free nanotubes f
(Equation (7a)):

d
dJ; =an(Ty)ve(1—f)—b¥sf—bf, 0=f=1
(7a)

The first (breakage) term on the right side of this
equation describes the breakdown of percolation
network in a flow with the shear rate y,, while the
second (shear-induced build-up) term takes into
account possible shear-induced agglomeration effects
[48]. The last (recovery) term in Equation (7a)
describes a structure build-up driven by attractive
interactions between the multi-wall carbon nan-
otubes in the absence of shear flow. If originally the
nanotubes were well dispersed in the polymer
matrix, the process of agglomeration in the absence
of shear takes a very long time with the rate con-
stant by ~ 107° s7! [35, 36]. The presence of steady
shear deformation, as it was found recently by us
[35, 36], facilitates the structure build-up consider-
ably. For shear rates of jp < 0.01 s7! the values of
b= b3 + by~ 1073 s7! were found. Equation (7a)
has been tried first to fit the data on stationary and
transient electrical conductivity at shear rates up to
1 s7!. It has been found that good fits can be already
obtained, if the value b is taken to be shear-rate
independent b # b(j). Therefore, in our further con-
siderations we will refer to a simplified version of
the kinetic Equation (7a) (Equation (7b)):

df N
L= a1~ /) ~bf, 0sfs1 ()
10° . T
— 230°C
—— 265°C
295°C
104 F \
&
10° | _-
102 s saaal sl i s aa
107" 10° 10° 102
a) Shear rate [s7]

keeping in mind that the effective rate constant b in
Equation (7b) describes a joint action of the shear
flow and of the attractive interactions between car-
bon nanotubes on their agglomeration.

Electrical conductivity of the sheared MWNT/poly-
carbonate melts, as will be shown below, depends
strongly on the experimental temperature. This
agrees with other studies, in which higher conduc-
tivity values have been found for processes involv-
ing high temperatures [15, 44, 49]. These corre-
spond to smaller values of the polymer viscosity
and thus smaller values of the shear forces acting on
the particle aggregates. Assuming the Arrhenius
dependence of the zero-shear polyurethane (TPU)
viscosity, Bilotti et al. [49] managed to transform
time dependences of the CNT/TPU composite con-
ductivities measured at temperatures well above the
glass transition temperature on a kind of master
curve at times larger than 10 s. The rate of conduc-
tivity change was assumed to be inverse propor-
tional to the viscosity of polymer.

To account for the temperature effect in the present
study, we propose to introduce into the breakage
term on the right side of Equation (7b) a tempera-
ture- and shear-dependent matrix viscosity 7(7’,7)
described by the Carreau-WLF model [50] (Equa-
tion (8)):

Cr

n(T %) = g ®)

+ erto)"
The polycarbonate F used in this study has # =
548 Pa-s, t; = 8.8:10*s, the shear-thinning expo-
nent n = 0.79 and the temperature-dependent param-
eter cr given by the Equation (9):

10° ¢ T T T T T T
— 15"
105!
1005
v
@
a
=
1 02 " L " 1 " 1 " 1 1 1
220 240 260 280 300 320 340 360
b) T[C

Figure 3. a) Shear dependence of the polycarbonate viscosity at three different temperatures. b) Temperature dependences
of the polycarbonate viscosity at three different shear rates.
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log. .. = o(Ty, — T)) _
Bt o+ (T, - T)

o(T = T)
¢, +(T—-T)

)

where Ty, = 300°C, T, = 150°C, c¢; = 8.86 and ¢, =
101.6°C. As can be seen from Figure 3a, the shear
viscosity of the polycarbonate melt as described by
Equation (8) stays nearly constant for shear rates
less than ji; ~ 10 s~!. This means that at the labora-
tory conditions, when shear rates do not exceed 1 s7/,
one can neglect the shear-thinning effect, #(7, ) =
n(T). Upon heating the sample from 220 till 320°C
the polycarbonate viscosity decreases by nearly two
orders of magnitude for shear rates below 7. (Fig-
ure 3b). At higher shear rates decrease of the vis-
cosity is smaller due to the shear-thinning effect.

3.3. Coupling part

To introduce the time and shear dependence into
Equation (5) for the electrical conductivity of per-
colating network, one needs to correlate the occu-
pation probability of network bonds p and the per-
colation threshold p. with such material parameters
as the fraction of (all) particles and the fraction of
free particles. It is clear that in the absence of shear
flow the initial occupation probability, pi,, should
be correlated with the weight fraction of carbon
nanotubes, ®@. In our previous rescaling approach,
based on the idea of percolation of sphere-like nan-
otube agglomerates [35-37], the weight fraction of
nanotubes has been rescaled to the initial percola-
tion probability, pa, of the agglomerates. In the
present study we assume two phases, where the
‘conductive phase’ undergoes an intrinsic percola-
tion threshold, whereas the non-percolating phase
composed from separate nanotubes slightly enhances
the matrix conductivity. In terms of our previous
works, the percolating phase can be considered as a
conductive superstructure formed by the agglomer-
ates (e.g. hierarchy of different agglomerates sizes
or ‘spinodal structure’). For the sake of simplicity,
we will restrict here from the use of rescaling
approach assuming instead that the initial occupa-
tion probability is equal to the volume fraction of
carbon nanotubes, ¢. It can be calculated from the
weight fraction @ as (Equation (10)):

_ Pch)
Ppc® + PNT(1 - (I))

pin = ¢ (10)

In Equation (10) ppc = 1.2 g/cm? is the density of
polycarbonate and pxt = 2.0 g/cm? is the MWNT
density. This gives pi, =0.006 for ® = 1 wt%. This
sample as well as the sample with p;, =0.004 (® =
0.75 wt%) are still highly conductive in the absence
of shear. Hence, the percolation threshold for the
system under study should lie below 0.004. If one
remembers that the carbon nanotubes are similar to
semi-flexible chains, then the percolation threshold
can be estimated using the Equation (11) [45]:
De = @.~ d7/5'l;3/5 L5 (1 1)
where d= 15 nm is the nanotube diameter, /, ~
0.5 um and L =5 um are nanotube persistence and
contour length, correspondingly. Equation (11) pro-
vides an estimate of p. ~ 0.001 which will be used
in the following.

Now, we are able to couple the electrical conductiv-
ity of the percolating phase described by Equa-
tion (5) and the kinetic changes in the fraction of
free nanotubes given by Equation (7b). Let us first
consider the case when the percolating phase is
totally destroyed by strong shearing and all nan-
otubes become free (unconnected). This case corre-
sponds to the values of occupation probability p = p.
and fraction of free particles /= 1. Contrary, in the
case of fully recovered sample all nanotubes belong
to the percolating phase: p = p;, and /= 0. To describe
the time- and shear- dependent transition between
these two cases, it is natural to introduce a new vari-
able Ap = p — p., that defines a distance from the
percolation threshold:

Ap = Apmax(1 _f) with Apmax = Pin — Pec- (12)
Equation (12) together with Equations (1) and (2)
implies that initially, in the absence of shear when
/=0, all carbon nanotubes are in the percolating
phase. Hence, the total nanocomposite conductivity
is mainly defined by the conductivity of percolating
network as in this case the matrix conductivity has a
negligible contribution into the total conductivity.
Contrary, in the presence of very strong shear when
f— 1 all carbon nanotubes are well dispersed in a
polymer matrix and the nanocomposite conductiv-
ity is defined by the matrix conductivity slightly
enhanced by the presence of conductive particles.
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Using Equation (12), we can rewrite Equation (5)
in terms of the shear- or process-dependent parame-
ter /' (Equation (13)):

1-7\2
ONet = O-f(T) Apimx(l _pc>

(13)

Equations (12) and (13) presume that the percola-
tion concentration is proportional to the fraction of
‘unfree’ 1 — f particles given by the kinetic Equa-
tion (7b). Hence, the percolation probability is not
anymore constant but depends on the history of
shear application. Other hidden presumptions of
present approach are that the particles in the perco-
lation phase are statistically distributed and ran-
domly oriented. The latter presumption is justified
by the transmission electron microscopy investiga-
tions showing that CNTs agglomerate in the ther-
moplastic matrix into the sphere-like clusters [13,
15] which can be hardly oriented by the flow. Thus,
strong shear first causes destruction of the filler
agglomerates which can be possibly followed by an
orientation of the individual anisometric filler parti-
cles [16]; the latter process is not considered here.

4. Results and discussion

In order to investigate how the shear flow affects
the electrical conductivity, a number of similar sam-
ples were cut out from mould injected plates. All
samples were first pre-treated thermo-mechanically
(by the procedure reported in [36]) to obtain a well-
defined initial state with a high level of electrical
conductivity. This initial state corresponds to ‘well-
agglomerated’ multi-wall carbon nanotubes, i.e. the
initial value of fraction of free nanotubes, fy, is
about zero. Different shear rates varying from 0.02
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to 1 rad/s were applied to pre-treated samples. Fig-
ure 4a shows typical results measured at 7= 265°C
for a series of samples with ® = 0.75 wt%. It can be
seen that at all shear rates the electrical conductivity
after initial monotonic decrease reaches a steady
state value for sufficient duration of the shear defor-
mation (stationary plateau). The steady-state values
of electrical conductivity, oy, were taken at 600 s
and then plotted versus shear rate, a corresponding
curve is shown in Figure 4b. As can be seen the
electrical conductivity of MWNT/polycarbonate
melts exhibits a pronounced ‘shear-thinning’ effect,
similar to that observed for shear viscosity of poly-
mer melts in the nonlinear regime of shearing.

It has been shown by Kharchenko et a/. [51] and by
us [36] that the shear thinning of electrical conduc-
tivity can be fitted by the Carreau equation [52] or a
similar Equation (14):

Teq

TR o
where o is the equilibrium value of electrical con-
ductivity, m. is the shear-thinning conductivity
exponent and #; is the time constant. The shear thin-
ning exponents for conductivity were found to be
0.66 [51] and 2 [36]. However, only one series of
samples with a certain wt% of MWNTs and at one
chosen melt temperature has been measured in the
previous studies. So, it is not clear a priory, whether
the shear-thinning curves measured for different
weight fractions and at different temperatures are
characterized by different values of the shear-shin-
ning conductivity exponent or a single one. If the
latter case is true, it will open an opportunity to pre-
dict the electrical conductivity at diverse processing
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Figure 4. a) Time dependent electrical conductivity at six different shear rates: 0.02, 0.05, 0.1 0.2, 0.5, and 1.0 5. ® =
0.75 wt%, T = 265°C. b) Dependence of stationary electrical conductivity on shear rate. ® = 0.75 wt%, T'=
265°C. Line represents a fit with the help of Equation (14), the shear-thinning exponent d = 3.
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conditions (after extrusion or injection moulding)
based on results measured under laboratory condi-
tions. In the following subsection we shall investi-
gate such a possibility, which is supported by exper-
iments varying both temperature and shear rate.

4.1. Steady-state electrical conductivity

The steady-state electrical conductivity can be cal-
culated from Equation (13) by putting into it the
stationary fraction of nanotubes in the percolating
network (Equation (15)):

1
1+ ab™ (T, 7,) 75

Equation (15) is given by a stationary solution of
Equation (7b) when df/dz = 0. Thus,

O-f(T) AI’IZHaX
[1+ ab™'n(T, 7,) 75

Equation (16) contains three parameters: shear-
thinning conductivity exponent, ms = 2m, the rup-

1 _fst = (15)

(16)
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ture strength @ and the rate constant b; the latter two
appear in combination as a product t;= ab™".

Figures 5a and 5b, filled symbols, show shear-thin-
ning dependences of the electrical conductivity
measured for polymer composites at two MWNT
concentrations (0.75 and 1 wt%) and three melt
temperatures (230, 265 and 295°C). The strongest
shear-thinning effect has been observed for the sys-
tem with the lowest MWNT concentration 0.75 wt%
and at the lowest temperature 230°C. The steady-
state values of the electrical conductivity of the
sample sheared at 1 s7! falls 6 orders of magnitude
compared to the unsheared system (Figure 5a). The
reason of such dramatic behaviour is that, on the
one hand, this system is very close to the insulator-
conductor transition, and on the other hand, it has
the highest matrix viscosity of 10 kPa-s. Hence,
very high shear stresses easily bring a weakly per-
colating MWNT network into a well-dispersed state,
characterized by a very low value of the electrical
conductivity close to that of the polycarbonate
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Figure 5. Stationary conductivity at different temperatures and shear rates for the systems with different weight fractions of
MWNTs: 0.75 wt% (a), 1 wt% (b), 2 wt% (c) and 5 wt% (d). Experimental data — symbols, fitting — lines. The
first symbols plotted at the shear rate of 0.0115 s™! correspond to the conductivity values measured for the
unsheared systems. In figures (a) and (b) black solid curve shows predictions for 7= 340°C.
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matrix. As the matrix viscosity (and thus the shear
stress) rapidly decreases with temperature, the shear-
thinning effect has been found less pronounced for
the samples with the same MWNT concentration
but sheared at higher temperatures. For example, at
295°C the electrical conductivity decreases only
two orders of magnitude both for the system with
0.75 and 1 wt% MWNTs. However, the system with
higher MWNT concentration exhibits a smaller
shear-thinning of the electrical conductivity (it falls
only 4 orders of magnitude) being farther from the
percolation threshold (Figure 5b).

All these features can be captured in the frame of
proposed superposition model which describes the
conductivity of a percolation network with a chang-
ing number of electrical resistors. The fitting results
for the systems with 0.75, 1 and 2 wt% MWNTs are
presented on Figure Sa—c by different lines. All data
are fitted with the same fitting parameters: the shear
thinning exponent ms = 3 and #= 0.025. Thus, the
shear-thinning exponent of electrical conductivity
is found to be considerably higher than it was
reported in two previous studies [36, 51]. At labora-
tory conditions it was possible to measure credible
data for the systems with 0.75 and 1 wt% MWNTs
only below 300°C, since above this temperature the
samples start to leak from the rheometer cell due to
lowered viscosity. Fortunately, after verification of
the model on samples with low MWNT concentra-
tions and temperatures it is possible to extrapolate
the theory predictions onto the systems with higher
MWNT concentrations and temperatures, i.e. to the
conditions relevant for nanocomposite processing.
Theoretical predictions at the temperature of 340°C,
which was found to be optimal for the injection
moulding of MWNT/polycarbonate melts [42], are
shown on the same Figures 5a and 5b as a black
solid line. Additionally, on Figure 5d we present the
model predictions for the system with 5 wt%
MWNTs at three melt temperatures (265, 295 and
340°C). One can see that the theory predicts a strong
reduction of electrical conductivity even for this
highly filled system at all melt temperatures, pro-
vided that the shear rates exceed 107 s7!.

4.2. Percolation curves

There is no general accepted picture in literature
what happens with the electrical percolation thresh-
old in sheared systems. While the present authors

interpret considerably lower values of conductivity
in the sheared system as a reduction of the volume
content of the agglomerates composing the conduc-
tive percolation network [35-37], other authors
attribute the reduction of conductivity to a shift of
the percolation threshold to higher values [53, 54].
There even exists an opinion that percolation thresh-
old can become anisotropic under application of the
shear forces, the possibility considered in the frame
of anisotropic percolation theory, in which the occu-
pation probability is different in two perpendicular
directions [55]. Theory of anisotropic electrical
conductivity developed by Semeriyanov ef al. on a
Bethe lattice [29] does not presume an anisotropic
percolation threshold but an anisotropic conductiv-
ity of electrical resistors which may differ in direc-
tions parallel and perpendicular to the shear direc-
tion. The percolation threshold stays unaffected by
the shearing and is solely defined by a functionality
of the Bethe lattice. The latter should be adjusted
using experimental data for a particular nanocom-
posite system as was shown in Subsection 3.3. The
model proposed in this study is based on the same
presumption of shear-independent percolation
threshold and neglect orientation effects.

Figure 6a shows theoretical predictions for percola-
tion curves at the fixed value of the percolation
threshold p. = 0.005 but at increasing shear rates: 0,
0.1, 1.0 and 10 s~!'. Compared to the curve calcu-
lated at the quiescent conditions (in the absence of
shear), the electrical conductivity falls by two
orders of magnitude at = 0.1 s7!, five orders of
magnitude at jp = 1 s! and eight orders of magni-
tude yo= 10 57!, becoming comparable with the
matrix conductivity. Such behaviour, especially the
form of two last curves, may give a false impression
that the percolation threshold shifts to higher values
with the increase of shear rate. From the data in Fig-
ure 6b one may conclude that the conductivity data
measured for the annealed (equilibrated) sample at
the absence of shear and for the injection molded
sample can be fitted in the frame of superposition
approach without assuming the shift of percolation
threshold. However, we do not exclude that for
some other systems with strong orientational effects
(for example, low viscous epoxies filled with CNTs
[53]) the percolation threshold will indeed shift to
higher values under strong shearing. This has been
found also for CNTs in high viscous polycarbonate
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melt for very high shear rates typical for micro-
injection moulding [41].

4.3. Transient electrical conductivity

Electrical conductivity of industrially relevant prod-
ucts produced by the melt processing via extrusion
or mould injection depends on a whole history of a
product preparation. Therefore, it is important to
learn to predict not only stationary values of the
electrical conductivity but also its transient behav-
iour in a wide range of shear rates. For the superpo-
sition approach proposed here, a correct prediction
of transient behaviour means determination of two
parameters in the kinetic Equation (7b): the rupture
strength @ and the rate constant b. Fitting of the
shear-thinning curves (Section 4.1) only provides
information about the ratio of these two parameters:
tr= a/b =0.025. One can separate parameters a and
b by fitting the time-dependent data for a number of
polymer nanocomposite systems with different
filler loadings and at different temperatures. To lend
the superposition approach a predictive quality at
very high shear rates, it is essential to keep both
parameters constant for a whole data pool, although
it may result in higher discrepancies between exper-
imental data and model predictions at particular
shear rates. All data discussed further are fitted with
the same values of fitting parameters: a =
0.25-10*Pal's"?and b= 10*s7".

Comparison of experimental data and model pre-
dictions for the system with 0.75 wt% MWNTs is
presented in Figure 7 for two different tempera-
tures: 230°C (Figure 7a) and 265°C (Figure 7b). As

can be seen, there is some variation in the initial
values of electrical conductivity between different
curves. Therefore, we have to introduce a correc-
tion on the initial state into our model by adjusting
an initial value of the fraction of free nanotubes.
This considerably improves the fits of time-depen-
dent data measured at the laboratory conditions.
The theory predictions at 230°C agree rather well
with the experimental data at shear rates up to 0.1 s,
while at higher shear rates the theory overestimates
the rate of shear-induced breakage. The transient
behaviour at the shear rate of 1 s~! is badly pre-
dicted as the stationary value for this curve is con-
siderably overestimated in the frame of our model
(see also Figure 5a). Otherwise, the theory predicts
really good the time-dependent data measured at
265°C (Figure 7b).

Comparison of experimental data and model pre-
dictions for the system with 1 wt% MWNTs reveals
a similar tendency: there is a noticeable overestima-
tion of the rate breakage at 230°C (Figure 7¢), while
at 265°C the theory predictions fit the data rather
good (Figure 7d). Contrary, at 295°C the theory
slightly underestimates the rate of shear-induced
breakage (not shown here). Finally we show on Fig-
ures 7e and 7f comparison between the measured
data and the model predictions for the system with
2 wt% MWNTs. The scarceness of data at 340°C
(Figure 7f) is due to the problem of sample leaking
caused by the lowered matrix viscosity. Neverthe-
less, the principle agreement between the experi-
ment and theory even at this elevated temperature is
rather good.
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Figure 7. Time dependent electric conductivity at different temperatures and shear rates for the systems with different
weight fractions of MWNTs: a) ® = 0.75 wt%, T'= 230°C; b) ® = 0.75 wt%, T= 265°C; ¢) ® =1 wt%, T=

230°C; d) @ =1 wt%, T'=265°C; e) ® =2 wt%, I'=

bols, fitting — lines.

Presently, we use a simple form of kinetic equation
given by expression (7b) which contains only two
terms and, hence, three fitting parameters (includ-
ing the shear-thinning exponent). To improve descrip-
tion of the time-dependent data, one needs to con-
sider a more elaborated kinetic equation, which
may contain an additional term for shear-induced
aggregation, or even a hierarchic set of kinetic
equations [36]. However, this will introduce a num-
ber of additional fitting parameters and thus consid-

265°C; f) ® =2 wt%, T = 340°C. Experimental data — sym-

erably complicate the task of their extraction from
the fitting procedure. This will be a topic of the next
paper, while in the present studies we maintained
the simplified picture of filler network kinetics.

5. Conclusions

In this paper we present a superposition approach
for description of electrical conductivity in sheared
polymer melts filled with attractively interacting
conductive (anisometric) particles. The main
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assumption of superposition approach is that the
filler particles can be separated into two phases: the
percolating one and non-percolating one. In the
absence of shear, if the percolation probability
exceeds the percolation threshold, (nearly) all parti-
cles belong to the percolating phase (network) and
strongly contribute to the electrical conductivity. In
the presence of shear, some particles are ruptured
from the network (or the percolating phase is dis-
persed into smaller parts) and thus they are consid-
ered to belong to the non-percolating phase. The
process of network rupture, i.e. how large is the
fraction of free particles, is described by an appro-
priate kinetic equation. This fraction defines the
enhancement of electrical conductivity of the poly-
mer matrix given by the theory of effective electri-
cal conductivity of composites with spheroidal
inclusions at low volume fractions [18]. Presently,
for the sake of simplicity, it is assumed that the par-
ticles belonging to the non-percolating phase are
oriented randomly. This seems to hold for small and
medium shear rates. Though it is possible to
account for orientational effects in the non-perco-
lating phase using for example the Folgar-Tucker
equation [19, 20].
The conductivity of percolating phase is described
with the help of a coupling approach based on the
classic percolation theory. There are two main
assumptions of our approach:
1) the percolation probability depends on the his-
tory of shear application,
2) the particles in the percolation phase are ori-
ented randomly.
If for some other system it will be find out that the
percolating clusters are noticeably deformed by the
flow before their breakage, one can try to account
for this effect using the theory of anisotropic elec-
trical conductivity proposed recently by Semeriya-
nov et al [29].
The superposition approach has been tested in the
present studies on the polycarbonate composites
filled with multi-walled CNTs. Four different melt
temperatures, three nanotube concentrations and up
to six different shear rates have been used to extract
the time-dependent and shear-thinning behaviour of
electrical conductivity. This allowed us to show that
the ‘shear-thinning’ exponent of electrical conduc-
tivity is about 3 which is considerably higher than it
was reported in two previous studies [36, 51]. In

overall, we found a rather good agreement between
the theory predictions and the experimental data.
This means that results measured at relatively small
shear rates in the laboratory conditions can be
extrapolated to much higher shear rates typical for
extrusion and injection moulding conditions. Thus,
the superposition approach, if implemented in a
commercial flow software, may open a way to pre-
dict — at least semi-quantitatively — the electrical
conductivity of industrial products produced from
polymer composites filled with highly attractive
conductive particles at diverse processing condi-
tions.
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