1,242 research outputs found
A comparative study of the neutrino-nucleon cross section at ultra high energies
The high energy neutrino cross section is a crucial ingredient in the
calculation of the event rate in high energy neutrino telescopes. Currently
there are several approaches which predict different behaviours for its
magnitude for ultrahigh energies. In this paper we present a comparison between
the predictions based on linear DGLAP dynamics, non-linear QCD and in the
imposition of a Froissart-like behaviour at high energies. In particular, we
update the predictions based on the Color Glass Condensate, presenting for the
first time the results for using the solution of the running
coupling Balitsky-Kovchegov equation. Our results demonstrate that the current
theoretical uncertainty for the neutrino-nucleon cross section reaches a factor
three for neutrinos energies around GeV and increases to a factor
five for GeV.Comment: 6 pages, 3 figure
Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV
We describe the measurement of the depth of maximum, Xmax, of the
longitudinal development of air showers induced by cosmic rays. Almost four
thousand events above 10^18 eV observed by the fluorescence detector of the
Pierre Auger Observatory in coincidence with at least one surface detector
station are selected for the analysis. The average shower maximum was found to
evolve with energy at a rate of (106 +35/-21) g/cm^2/decade below 10^(18.24 +/-
0.05) eV and (24 +/- 3) g/cm^2/decade above this energy. The measured
shower-to-shower fluctuations decrease from about 55 to 26 g/cm^2. The
interpretation of these results in terms of the cosmic ray mass composition is
briefly discussed.Comment: Accepted for publication by PR
Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory (vol 4, 038, 2017) (Erratum)
© Iop Publishing.
ArtĂculo firmado por mĂĄs de 10 autores.Depto. de Estructura de la Materia, FĂsica TĂ©rmica y ElectrĂłnicaFac. de Ciencias FĂsicasTRUEpu
Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy
We measure the energy emitted by extensive air showers in the form of radio
emission in the frequency range from 30 to 80 MHz. Exploiting the accurate
energy scale of the Pierre Auger Observatory, we obtain a radiation energy of
15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV
arriving perpendicularly to a geomagnetic field of 0.24 G, scaling
quadratically with the cosmic-ray energy. A comparison with predictions from
state-of-the-art first-principle calculations shows agreement with our
measurement. The radiation energy provides direct access to the calorimetric
energy in the electromagnetic cascade of extensive air showers. Comparison with
our result thus allows the direct calibration of any cosmic-ray radio detector
against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI.
Supplemental material in the ancillary file
Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory
On September 14, 2015 the Advanced LIGO detectors observed their first
gravitational-wave (GW) transient GW150914. This was followed by a second GW
event observed on December 26, 2015. Both events were inferred to have arisen
from the merger of black holes in binary systems. Such a system may emit
neutrinos if there are magnetic fields and disk debris remaining from the
formation of the two black holes. With the surface detector array of the Pierre
Auger Observatory we can search for neutrinos with energy above 100 PeV from
point-like sources across the sky with equatorial declination from about -65
deg. to +60 deg., and in particular from a fraction of the 90% confidence-level
(CL) inferred positions in the sky of GW150914 and GW151226. A targeted search
for highly-inclined extensive air showers, produced either by interactions of
downward-going neutrinos of all flavors in the atmosphere or by the decays of
tau leptons originating from tau-neutrino interactions in the Earth's crust
(Earth-skimming neutrinos), yielded no candidates in the Auger data collected
within s around or 1 day after the coordinated universal time (UTC)
of GW150914 and GW151226, as well as in the same search periods relative to the
UTC time of the GW candidate event LVT151012. From the non-observation we
constrain the amount of energy radiated in ultrahigh-energy neutrinos from such
remarkable events.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 Ă 10 18 eV
Cosmic rays are atomic nuclei arriving from outer space that reach the highest energies observed in nature. Clues to their origin come from studying the distribution of their arrival directions. Using 3 Ă 10 4 cosmic rays with energies above 8 Ă 10 18 electron volts, recorded with the Pierre Auger Observatory from a total exposure of 76,800 km2 sr year, we determined the existence of anisotropy in arrival directions. The anisotropy, detected at more than a 5.2Ï level of significance, can be described by a dipole with an amplitude of 6.5 +1.3 -0.9 percent toward right ascension αd = 100 ± 10 degrees and declination ÎŽd = -24 +12 -13 degrees. That direction indicates an extragalactic origin for these ultrahighenergy particles.La nĂłmina completa de autores puede verse en el archivo asociado a este Ătem.Facultad de Ciencias Exacta
- âŠ