56 research outputs found
Die Delphi-Methode in der Regionalentwicklung: Anwendungsbeispiel zur Erarbeitung von regionalpolitischen Maßnahmen zur Förderung der Dienstleistungswirtschaft im Erzgebirge
Die Delphi-Technik bietet sich im Rahmen regionalökonomischer Untersuchungen an, um praxisorientierte Maßnahmen zur Begegnung einer konkreten Problemstellung zu generieren, die nicht durch analytische Methoden entwickelt werden können oder sollen. Da die Teilnehmer Einschätzungen diskutieren, die sie selbst erarbeitet haben, kann der Prozess stets eng am Untersuchungsobjekt gehalten werden. An mehreren Stellen des Prozesses können zudem die Moderatoren Einfluss nehmen um den Fortgang aktiv zu steuern. Bei der quantitativen Auswahl der Teilnehmer empfiehlt es sich allerdings, deutlich mehr Personen zu rekrutieren, als für die Bearbeitung notwendig erscheinen, da die Zahl der Teilnehmer in jeder Runde tendenziell sinkt. Insbesondere bei der Nutzung onlinebasierter Fragebögen ist auf genaue Instruktionen und eine umfangreiche Aufklärung Wert zu legen. Der zentrale Vorteil der Methode liegt in der starken Strukturierung des Erkenntnisprozesses. Dieser kommt insbesondere in der persönlichen Diskussion sowohl im vorgestellten Fall geringer Gruppengrößen als auch in stärkerem Ausmaß in größeren Gruppen zum Tragen
RNA contact prediction by data efficient deep learning
On the path to full understanding of the structure-function relationship or even design of RNA, structure prediction would offer an intriguing complement to experimental efforts. Any deep learning on RNA structure, however, is hampered by the sparsity of labeled training data. Utilizing the limited data available, we here focus on predicting spatial adjacencies ("contact maps") as a proxy for 3D structure. Our model, BARNACLE, combines the utilization of unlabeled data through self-supervised pre-training and efficient use of the sparse labeled data through an XGBoost classifier. BARNACLE shows a considerable improvement over both the established classical baseline and a deep neural network. In order to demonstrate that our approach can be applied to tasks with similar data constraints, we show that our findings generalize to the related setting of accessible surface area prediction
Coulomb dissociation of O-16 into He-4 and C-12
We measured the Coulomb dissociation of O-16 into He-4 and C-12 within the FAIR Phase-0 program at GSI Helmholtzzentrum fur Schwerionenforschung Darmstadt, Germany. From this we will extract the photon dissociation cross section O-16(alpha,gamma)C-12, which is the time reversed reaction to C-12(alpha,gamma)O-16. With this indirect method, we aim to improve on the accuracy of the experimental data at lower energies than measured so far. The expected low cross section for the Coulomb dissociation reaction and close magnetic rigidity of beam and fragments demand a high precision measurement. Hence, new detector systems were built and radical changes to the (RB)-B-3 setup were necessary to cope with the high-intensity O-16 beam. All tracking detectors were designed to let the unreacted O-16 ions pass, while detecting the C-12 and He-4
Diverse Applications of Nanomedicine
The design and use of materials in the nanoscale size range for addressing medical and health-related issues continues to receive increasing interest. Research in nanomedicine spans a multitude of areas, including drug delivery, vaccine development, antibacterial, diagnosis and imaging tools, wearable devices, implants, high-throughput screening platforms, etc. using biological, nonbiological, biomimetic, or hybrid materials. Many of these developments are starting to be translated into viable clinical products. Here, we provide an overview of recent developments in nanomedicine and highlight the current challenges and upcoming opportunities for the field and translation to the clinic. \ua9 2017 American Chemical Society
Coulomb dissociation of 16O into 4He and 12C
We measured the Coulomb dissociation of 16O into 4He and 12C at the R3B setup in a first campaign within FAIR Phase 0 at GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt. The goal was to improve the accuracy of the experimental data for the 12C(a,?)16O fusion reaction and to reach lower center-ofmass energies than measured so far. The experiment required beam intensities of 109 16O ions per second at an energy of 500 MeV/nucleon. The rare case of Coulomb breakup into 12C and 4He posed another challenge: The magnetic rigidities of the particles are so close because of the same mass-To-charge-number ratio A/Z = 2 for 16O, 12C and 4He. Hence, radical changes of the R3B setup were necessary. All detectors had slits to allow the passage of the unreacted 16O ions, while 4He and 12C would hit the detectors' active areas depending on the scattering angle and their relative energies. We developed and built detectors based on organic scintillators to track and identify the reaction products with sufficient precision
- …