20 research outputs found

    Effective computability of solutions of ordinary differential equations: the thousand monkeys approach

    Get PDF
    In this note we consider the computability of the solution of the initial- value problem for ordinary di erential equations with continuous right- hand side. We present algorithms for the computation of the solution using the \thousand monkeys" approach, in which we generate all possi- ble solution tubes, and then check which are valid. In this way, we show that the solution of a di erential equation de ned by a locally Lipschitz function is computable even if the function is not e ectively locally Lips- chitz. We also recover a result of Ruohonen, in which it is shown that if the solution is unique, then it is computable, even if the right-hand side is not locally Lipschitz. We also prove that the maximal interval of existence for the solution must be e ectively enumerable open, and give an example of a computable locally Lipschitz function which is not e ectively locally Lipschitz

    Boundedness of the domain of definition is undecidable for polynomial odes

    Get PDF
    Consider the initial-value problem with computable parameters dx dt = p(t, x) x(t0) = x0, where p : Rn+1 ! Rn is a vector of polynomials and (t0, x0) 2 Rn+1. We show that the problem of determining whether the maximal interval of definition of this initial-value problem is bounded or not is in general undecidable

    Computability with polynomial differential equations

    Get PDF
    In this paper, we show that there are Initial Value Problems de ned with polynomial ordinary di erential equations that can simulate univer- sal Turing machines in the presence of bounded noise. The polynomial ODE de ning the IVP is explicitly obtained and the simulation is per- formed in real time

    Computational bounds on polynomial differential equations

    Get PDF
    In this paper we study from a computational perspective some prop-erties of the solutions of polynomial ordinary di erential equations. We consider elementary (in the sense of Analysis) discrete-time dynam-ical systems satisfying certain criteria of robustness. We show that those systems can be simulated with elementary and robust continuous-time dynamical systems which can be expanded into fully polynomial ordinary diferential equations with coe cients in Q[ ]. This sets a computational lower bound on polynomial ODEs since the former class is large enough to include the dynamics of arbitrary Turing machines. We also apply the previous methods to show that the problem of de-termining whether the maximal interval of defnition of an initial-value problem defned with polynomial ODEs is bounded or not is in general undecidable, even if the parameters of the system are computable and comparable and if the degree of the corresponding polynomial is at most 56. Combined with earlier results on the computability of solutions of poly-nomial ODEs, one can conclude that there is from a computational point of view a close connection between these systems and Turing machines

    "New" Veneziano amplitudes from "old" Fermat (hyper) surfaces

    Get PDF
    The history of discovery of bosonic string theory is well documented. This theory evolved as an attempt to find a multidimensional analogue of Euler's beta function. Such an analogue had in fact been known in mathematics literature at least in 1922 and was studied subsequently by mathematicians such as Selberg, Weil and Deligne among others. The mathematical interpretation of this multidimensional beta function is markedly different from that described in physics literature. This paper aims to bridge the gap between the existing treatments. Preserving all results of conformal field theories intact, developed formalism employing topological, algebro-geometric, number-theoretic and combinatorial metods is aimed to provide better understanding of the Veneziano amplitudes and, thus, of string theories.Comment: 92 pages LaTex, some typos removed, discussion section is added along with several additional latest reference

    Low-Dimensional Dynamical Systems

    No full text

    A combinatorial analog of the Poincaré Index Theorem

    No full text
    corecore