
Computability with Polynomial Differential

Equations

Daniel S. Graça
DM/FCT, Universidade do Algarve, C. Gambelas,

8005-139 Faro, Portugal
& SQIG/Instituto de Telecomunicações, Lisbon, Portugal

Manuel L. Campagnolo
DM/ISA, Technical University of Lisbon, 1349-017 Lisbon, Portugal

& SQIG/Instituto de Telecomunicações, Lisbon, Portugal

Jorge Buescu
DM/FCUL, University of Lisbon, Portugal

& CAMGSD, Lisbon, Portugal

September 16, 2011

Abstract

In this paper, we show that there are Initial Value Problems defined
with polynomial ordinary differential equations that can simulate univer-
sal Turing machines in the presence of bounded noise. The polynomial
ODE defining the IVP is explicitly obtained and the simulation is per-
formed in real time.

1 Introduction

Computational models based on natural phenomena have recently attracted
a significant amount of interest. However, most of those models are essen-
tially “hybrid” since they combine smooth dynamics with non-differentiable, or
at least non-analytic, “clocks” to simulate the discrete dynamics of a Turing
machine (e.g. [KCG94], [Koi96], [Sie99]). This situation, however, is not sat-
isfactory: many nonlinear mathematical models arising from classical Physics
(or more generally the natural sciences), as well as many of the fundamental
examples in Dynamical Systems theory, are based on systems of ordinary dif-
ferential equations (ODEs) with analytic, indeed very often polynomial, right
hand-sides. This is the case of now classical systems like the van der Pol equa-
tion, the Lotka-Volterra system or the Lorenz equations [GH83], [HS74].

In this paper, we explore the computational capabilities of such polynomial
dynamical systems. In [GCB05] it was shown that systems defined with ana-
lytic ODEs can simulate universal Turing machines, even if some perturbation
is added to the system. Here we will present a detailed proof of a stronger re-
sult: we will prove that systems defined with polynomial ODEs are still Turing
universal, even under the influence of some perturbation.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sapientia

https://core.ac.uk/display/61500745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Several authors (e.g. [Moo90] [Bra95], [SS95]) have already proved that rel-
atively simple discrete-time systems can simulate Turing machines. The general
approach is to associate each configuration of a Turing machine to a point of Rn,
and to show that there is a dynamical system with state space in Rn that embeds
its evolution. It is known that Turing machines can be simulated on compact
spaces, even of low dimension [Moo90], [KCG94], [SS95]. While compactness is
a desirable property of dynamical systems, it is probably too strong a require-
ment since it is believed that no analytic map on a compact, finite-dimensional
space can simulate a Turing machine through a reasonable encoding [Moo98].

The requirement of compactness has another drawback: it prevents sys-
tems capable of simulating an arbitrary Turing machine of exhibiting robust-
ness to noise. Indeed, Casey [Cas96], [Cas98] has shown that in the presence
of bounded analog noise, recurrent neural networks can only recognize regular
languages. This result was later generalized in [MO98] to other analog discrete-
time computational systems. Robustness is a critical issue in analog models
since non-computable behavior might arise when the use of exact real quan-
tities is allowed. For instance, results of Pour-El, Richards, Weihrauch, and
Zhong [PER81], [PEZ97], [WZ02] show that there exists a three-dimensional
wave equation, with computable initial conditions, whose unique solution is
not computable. Such behavior, however, is ruled out in the presence of noise
[WZ02]. Recurrent analog neural networks are another known case where non-
computable behavior can occur if real parameters are represented with infinite
precision [SS95].

In this paper we will show that Turing machines can be simulated by flows
defined by polynomial ODEs which are robust to perturbations (in a sense to
be defined later). We will consider simulations on unbounded spaces. Our work
is in some sense related to [KM99], where a constructive simulation of Turing
machines using closed-form analytic maps is presented. However, in [KM99]
only the discrete-time case is explored, and the question of how the presence of
noise affects the computational power of the model is not discussed.

The previously mentioned results show that finite-dimensional maps are ca-
pable of simulating the transition function of an arbitrary Turing machine. In
that respect, those are results about the computational power of hybrid sys-
tems, which are continuous with respect to the state space but evolve discretely
in time. Another approach has been to simulate the evolution of Turing ma-
chines with continuous flows in Rn [Bra95], [CMC02], [MC04]. While those
flows can be infinitely differentiable, it has only recently been shown that they
can be analytic [GCB05]. Since precise “clocks” cannot be defined with analytic
functions, the proof in [GCB05] relies on maps robust to perturbations.

In the present paper we show that those robust maps may be suitably ap-
proximated by a system of polynomial differential equations y′ = pM (t, y), where
pM is a polynomial, thus allowing robust simulation of any Turing machine M .

It is worthwhile to observe that our work is closely related to the wider
topic of stability in dynamical systems. In fact, there has been a long tradition
of considering only structurally stable systems [HS74] when modeling physical
systems. The argument is that, due to measurement uncertainties, qualitative
properties of a system should not change with small perturbations. Gucken-
heimer and Holmes [GH83] refer to this approach as the “stability dogma”.
However, recent developments in the theory of dynamical systems suggest that
this is too restrictive to account for all meaningful systems [Via01]. In fact, one

2

can relax the notion of stability and require robustness only for those properties
of interest for the system under consideration. Here, we have chosen the latter
line of work: our only concern is that each system performs a simulation of a
Turing machine robust to perturbations in a manner that we will precise below.

The paper may be outlined as follows. In Section 2 we introduce the ideas
and concepts related to simulations robust to perturbations. Sections 3, 4 and
5 provide tools that will be necessary later. In Sections 6 and 7 we prove
in a constructive way the main results of this paper: each Turing machine
can be simulated by an analytic map, or by polynomial ODEs even under the
influence of (small) errors. We end describing some connections of this paper
with previous results on continuous-time models of computation.

2 Simulation of Turing machines

Before stating the main results, we briefly describe some aspects of our error-
robust simulation of Turing machines. For now, we will only be concerned with
discrete-time simulations. Therefore we want to obtain a map that “captures”
the behavior of the transition function. We will encode each configuration as
a triple (x, y, z) ∈ N3, and prove that the simulation still works if this triple
is slightly perturbed. Without loss of generality, consider a Turing machine M
using 10 symbols, the blank symbol B = 0, and symbols 1, 2, ..., 9. Let

...B B B a−p a−p+1... a−1 a0 a1... anBBB...,

represent the tape contents of the Turing machine M . We suppose the head
to be reading symbol a0 and ai ∈ {0, 1, ..., 9} for all i (except that they are
non-zero for i = −p, n). We also suppose that M has m states, represented
by numbers 1 to m. For convenience, we consider that if the machine reaches a
halting configuration it moves to the same configuration. We assume that, in
each transition, the head either moves to the left, moves to the right, or does
not move. Take

y1 = a0 + a110 + ...+ an10n,
y2 = a−1 + a−210 + ...+ a−p10p−1,

(1)

and let q be the state associated to the current configuration. Then the triple
(y1, y2, q) ∈ N3 gives the current configuration of M .

Let us introduce some useful notation. Let ‖(x1, ..., xn)‖∞ = max1≤i≤n |xi|
and ‖f‖∞ = supx∈R |f(x)|. If f : A→ A is a function, then f [k] denotes its kth
iterate (if k = 0, the 0th iterate is simply the identity function). We say that
a real or complex function f is a closed-form function if it is elementary in the
sense of analysis, that is, if it is a meromorphic function defined on some open
subset of R or C that is contained in an elementary extension field of the field of
rational functions C(z) [Rit48], [Ros72] (where ‘elementary’ corresponds to the
introduction of the complex exponential and logarithm). This corresponds to the
possibility of obtaining f from the elementary functions of analysis (e.g. rational
functions, sin, tan, exp,...) through finitely many compositions, inversions and
field operations. In this paper we shall deal exclusively with real functions.

We may now present the first main result of this paper which states that
there exists a (globally analytic) closed-form function that robustly simulates
the transition functions of any Turing machine.

3

Theorem 1 Let ψ : N3 → N3 be the transition function of a Turing machine
M , under the encoding described above and let 0 < δ < ε < 1/2. Then ψ admits
a globally analytic closed-form extension fM : R3 → R3, robust to perturbations
in the following sense: for all f such that ‖f − fM‖∞ ≤ δ, for all j ∈ N, and
for all x̄0 ∈ R3 satisfying ‖x̄0 − x0‖∞ ≤ ε, where x0 ∈ N3 represents an initial
configuration, ∥∥∥f [j](x̄0)− ψ[j](x0)

∥∥∥
∞
≤ ε.

A few remarks are in order. First, and as noticed before, we implicitly
assumed that if y is a halting configuration, then ψ(y) = y. Secondly, we notice
that the upper bound (1

2) on ε results from the encoding we have chosen, which
is over the integers. In fact, the bound is maximal with respect to that encoding.
We also remark that the proof of the previous theorem is constructive and that
f can be obtained by composing the following functions: polynomials, sin, cos,
and arctan.

We now present the other main results.

Theorem 2 Let ψ : N3 → N3 be the transition function of a Turing machine
M , under the encoding described above and let 0 < ε < 1/4. There is a poly-
nomial pM : Rm+4 → Rm+3, with m ∈ N, and a constant y0 ∈ Rm such that
the ODE z′ = pM (t, z) simulates M in the following sense: for all x0 ∈ N3, the
solution z(t) of the IVP defined by the previous ODE plus the initial condition
(x0, y0), defined for t0 = 0, satisfies∥∥∥z1(j)− ψ[j](x0)

∥∥∥
∞
≤ ε,

for all j ∈ N, where z ≡ (z1, z2) with z1 ∈ R3 and z2 ∈ Rm.

Indeed, we will prove the following “robust” version of Theorem 2.

Theorem 3 Given the conditions of Theorem 2, there is a PIVP function (see
definition on the next section) fM : R7 → R6 and a constant y0 ∈ R3 such
that the ODE z′ = fM (t, z) robustly simulates M in the following sense: for
all g satisfying ‖g − fM‖∞ < 1/2, there is some 0 < η < 1/2 such that for all
(x̄0, ȳ0) ∈ R6 satisfying ‖(x̄0, ȳ0)− (x0, y0)‖∞ ≤ ε, the solution z(t) of

z′ = g(t, z), z(0) = (x̄0, ȳ0)

satisfies, for all j ∈ N and for all t ∈ [j, j + 1/2],∥∥∥z1(t)− ψ[j](x0)
∥∥∥
∞
≤ η,

where z ≡ (z1, z2) with z1 ∈ R3 and z2 ∈ R3.

3 Polynomial differential equations

In this section we analyze some properties of solutions of Initial Value Problems
(IVPs) defined with polynomial ODEs{

x′ = p(t, x),
x(t0) = x0,

(2)

4

where p is a vector of polynomials. In the remainder of the paper an IVP of
the form (2) will be called a polynomial IVP, and its solution will be termed
a PIVP function. We note that many of the usual functions from analysis are
PIVP functions, e.g. polynomials, the trigonometric functions sin, cos, tan, or
the exponential exp. We note also that PIVP functions obviously belong to
the class of differentially algebraic (DA) functions [28], but not the other way
around: DA functions are defined by implicit algebraic differential equations,
and so a global ‘normal form’ ODE for DA functions is not in general defined.

Note that by the standard existence-uniqueness theory (see e.g. [CL55],
[Lef65]), an IVP associated to a system of ODEs x′ = f(t, x) has a unique solu-
tion whenever f is continuous and locally Lipschitz with respect to the variable
x. Since polynomials are globally analytic, these conditions are automatically
satisfied for polynomial IVPs.

The following result is a strengthening of the elimination theorem of Rubel
for differentially algebraic functions [RS85] to the present case of polynomial
IVPs.

Theorem 4 Consider the IVP{
x′ = f(t, x),
x(t0) = x0,

(3)

where f : Rn+1 → Rn and each component of f is a composition of polynomials
and PIVP functions. Then there exist m ≥ n, a polynomial p : Rm+1 → Rm
and a y0 ∈ Rm such that the solution of (3) is given by the first n components
of y = (y1, ..., ym), where y is the solution of the polynomial IVP{

y′ = p(t, y),
y(t0) = y0.

(4)

Proof. Let f = (f1, . . . , fn). If every fi, i = 1, . . . , n, is a polynomial
there is nothing to prove, so we suppose k ≤ n is the first integer such that
fk is not a polynomial. For simplicity we will handle only the case where the
transcendence degree of fk over the ring of polynomials is 1; the case of higher
degree will follow from iterating the construction.

Suppose then that fk(t, x1, . . . , xn) = g(p(t, x1, ..., xn)), where p is a polyno-
mial and g is the first component of the solution y of{

y′ = q(t, y),
y(t0) = y0.

(5)

where q is a vector of polynomials in Rl not independent of y (thus ensuring
that g is not trivially a polynomial in t). Define new variables ȳ by performing
the change of independent variable t 7→ p(t, x1, ..., xn) in (5), that is,

ȳ(t) = y(p(t, x1, . . . , xn)).

Then

dȳ

dt
=
dy

dt
(p(t, x1, . . . , xn)) p′(t, x1, ..., xn)

= q(p(t, x1, ..., xn), ȳ)

(
n∑
i=1

∂p

∂xi
fi(t, x) +

∂p

∂t

)
,

(6)

5

subject to the initial condition ȳ(t0) = y(p(t0, x1(t0), ..., xn(t0))).
We now consider the new IVP constructed by appending to (3) the IVP

(6) and replacing the terms g(p(t, x1, ..., xn)) by the new variable ȳ1. By this
procedure we have replaced the IVP in Rn (3) with an IVP in Rn+l substituting
the first non-polynomial term of f by a polynomial and increasing the system
with l new variables defined by a polynomial IVP.

If the transcendence degree of fk over the ring of polynomials is d > 1 we
iterate this procedure d times. In this way we have effectively eliminated all
non-polynomial terms up to component k by increasing the order of the system
only with polynomial equations. Repeating this procedure with the variables
labeled k + 1 up to n (whenever necessary) we end up with a polynomial IVP
satisfying the stated conditions.

Let us illustrate this theorem with an example. Consider the IVP{
x′1 = sin2 x2 x1(0) = 0,
x′2 = x1 cosx2 − ex1+t x2(0) = 0, (7)

with solution (x1, x2). Since sin, cos, and exp are solutions of polynomial IVPs
((sin, cos) is the solution of z1 = z2, z2 = −z1, with z1(0) = 0, z2(0) = 1 and
exp is the solution of z′ = z with z(0) = 1), Theorem 4 ensures that there
is a polynomial IVP, with initial condition defined for t0 = 0, whose solution
is formed by x1, x2, and possibly other components. Since the proof of the
theorem is constructive, we can derive this polynomial IVP. Indeed, one has
(sinx2)′ = (cosx2)x′2 and (cosx2)′ = −(sinx2)x′2 and therefore (sinx2, cosx2)
is the solution of the IVP{

y′3 = y4x
′
2

y′4 = −y3x′2
⇔
{
y′3 = y4(x1 cosx2 − ex1+t)
y′4 = −y3(x1 cosx2 − ex1+t)

⇔
{
y′3 = y4(x1y4 − ex1+t)
y′4 = −y3(x1y4 − ex1+t)

with initial condition y3(0) = sinx2(0) = 0 and y4(0) = 1. It remains to
eliminate the term ex1+t. But this function is the solution of the IVP

y′5 = y5 (x′1 + t′) = y5(sin2 x2 + 1) = y5(y2
3 + 1),

with initial condition y5(0) = ex1(0)+0 = 1. Therefore the solution of (7) is
formed by the first two components of the solution of the polynomial IVP

y′1 = y2
3 y1(0) = 0,

y′2 = y1y4 − y5 y2(0) = 0,
y′3 = y4(y1y4 − y5) y3(0) = 0,
y′4 = −y3(y1y4 − y5) y4(0) = 1,
y′5 = y5(y2

3 + 1) y5(0) = 1.

4 Preliminary results

This section is devoted to the presentation of auxiliary results that will be useful
when proving Theorem 1. As our first task, we introduce an analytic extension
ω : R → R for the function f : N → N defined by f(n) = nmod 10. This

6

function will be necessary when simulating Turing machines. It will be used
to read symbols written on the tape. To achieve this purpose, we can use a
periodic function, of period 10, such that ω(i) = i, for i = 0, 1, ..., 9. Then, using
trigonometric interpolation (cf. [Atk89, pp. 176–182]), one may take

ω(x) = a0 + a5 cos(πx) +

 4∑
j=1

aj cos
(
jπx

5

)
+ bj sin

(
jπx

5

) , (8)

where a0, ..., a5, b1, ..., b4 are computable coefficients that can be explicitly ob-
tained by solving a system of linear equations (the number of variables should
be equal to the number of values to be interpolated). Actually the number of
ai’s should agree with those of bi’s, yielding 11 interpolated values. Since we
only need 10 such values, one can take b5 = 0 and still obtain a trigonometric
function ω satisfying ω(i) = i, for i = 0, 1, ..., 9.

It is easy to see that ω is uniformly continuous in R (ω has period 10, is
continuous in the interval [0, 10] and ω(0) = ω(10)). Hence, for every ε ∈
(0, 1/2), there will be some ζε > 0 satisfying

∀n ∈ N, x ∈ [n− ζε, n+ ζε] ⇒ |ω(x)− nmod 10| ≤ ε. (9)

When simulating a Turing machine, we will also need to keep the error under
control. In many cases, this will be done with the help of the “error-contracting
function” defined by (cf. Fig. 1)

σ(x) = x− 0.2 sin(2πx).

The function σ is a uniform contraction in a neighborhood of integers:

Proposition 5 Let n ∈ Z and let ε ∈ [0, 1/2). Then there is some contracting
factor λε ∈ (0, 1) such that, ∀δ ∈ [−ε, ε], |σ(n+ δ)− n| < λεδ.

Proof. It is sufficient to consider the case where n = 0. Because σ is
odd, we only study σ in the interval [0, ε]. Let g(x) = σ(x)/x. This function is
strictly increasing in (0, 1/2]. Then, noting that g(1/2) = 1 and limx→0 g(x) =
1− 0.4π ≈ −0.256637, we conclude that there exists some λε ∈ (0, 1) such that
|σ(x)| < λε|x| for all x ∈ [−ε, ε].

Remark 6 For the rest of this paper we suppose that ε ∈ [0, 1/2) is fixed and
that λε is the respective contracting factor given by Lemma 5. For instance, we
can take λ1/4 = 0.4π − 1 ≈ 0.2566371.

The function σ will be used in our simulation to keep the error controlled
when bounded quantities are involved (e.g., the actual state, the symbol being
read, etc). We will also need another error-contracting function that controls
the error for unbounded quantities, e.g. when using expressions that depend on
the variables coding the tape contents. This will be achieved with the help of the
function l3 : R2 → R, that has the property that whenever ā is an approximation
of a ∈ {0, 1, 2}, then |l3(ā, y) − a| < 1/y, for y > 0. In other words, l3 is an
error-contracting map, where the error is contracted by an amount specified
by the second argument of l3. We start by defining a preliminary function l2
satisfying similar conditions, but only when a ∈ {0, 1} (cf. Fig. 2).

7

-2 -1 1 2

-2

-1

1

2

Figure 1: Graphical representation of the function σ.

2 4 6 8 10

0.2

0.4

0.6

0.8

1

Figure 2: Graphical representation of the function l2. The dashed line represents
l2(0.2, y) while the gray line represents l2(1.2, y).

Lemma 7
∣∣π
2 − arctanx

∣∣ < 1
x for x ∈ (0,∞).

Proof. Let f(x) = 1
x + arctanx − π

2 . It is easy to see that f is decreasing
in (0,∞) and that limx→∞ f(x) = 0. Therefore f(x) > 0 for x ∈ (0,∞) and the
result holds.

Lemma 8
∣∣π
2 + arctanx

∣∣ < 1
|x| for x ∈ (−∞, 0).

Proof. Take f(x) = 1
x + arctanx+ π

2 and proceed as in Lemma 7.

Lemma 9 Let l2 : R2 → R be given by l2(x, y) = 1
π arctan(4y(x − 1/2)) + 1

2 .
Suppose also that a ∈ {0, 1}. Then, for any ā, y ∈ R satisfying |a− ā| ≤ 1/4
and y > 0, we obtain |a− l2(ā, y)| < 1/y.

Proof.

1. Consider a = 0. Then ā−1/2 ≤ −1/4 implies |4y(ā−1/2)| ≥ y. Therefore,
by Lemma 8,∣∣∣π

2
+ arctan(4y(ā− 1/2))

∣∣∣ < 1
|4y(ā− 1/2)|

≤ 1
y
.

8

Moreover, multiplying the last inequality by 1/π and noting that 1
πy <

1
y ,

it follows that |a− l2(ā, y)| < 1/y.

2. Consider a = 1. Remark that ā− 1/2 ≥ 1/4 and proceed as above, using
Lemma 7 instead of Lemma 8.

We denote below, for any x ∈ R, dxe = min{k ∈ Z : k ≥ x}.

Proposition 10 Let a ∈ {0, 1, 2} and let l3 : R2 → R be given by

l3(x, y) = l2((σ[d+1](x)− 1)2, 3y).(2l2(σ[d](x)/2, 3y)− 1) + 1,

where d = 0 if ε ≤ 1/4 and d = d− log(4ε)/ log λεe otherwise. Then for any
ā, y ∈ R satisfying |a− ā| ≤ ε and y ≥ 2, we have |a− l3(ā, y)| < 1/y.

Proof. Let us start by noticing that for all x, y ∈ R for which l2(x, y)
is defined, we have 0 < l2(x, y) < 1. Consider the case where a = 0, ā ∈
[−1/4; 1/4], i.e. ε ≤ 1/4. Then

∣∣(σ(ā)− 1)2 − 1
∣∣ < 1/4, and by the previous

lemma,
1− 1/y < l2((σ(ā)− 1)2, y) < 1.

Similarly, we conclude

−1 < 2l2(ā/2, y)− 1 < −1 + 2/y.

Since y ≥ 2, this implies

−1 < l2((σ(ā)− 1)2, y)(2l2(ā/2, y)− 1) < (1− 1/y)(−1 + 2/y),

or
0 < l2((σ(ā)− 1)2, y)(2l2(ā/2, y)− 1) + 1 < 3/y.

Hence, for a = 0, |a − l3(ā, y)| < 1/y. Proceeding in the same way for a = 1, 2
and ε ≤ 1/4), the same result follows.

It remains to consider the more general case |a− ā| ≤ ε. In that case just
take d = d− log(4ε)/ log λεe and apply d times the function σ to ā, it follows
that

∣∣a− σ[d](ā)
∣∣ ≤ 1/4 and we fall back in the previous case (use σ[d](ā) instead

of ā).

5 Polynomial interpolation

In this paper we use polynomial interpolation to simulate a given Turing ma-
chine. Moreover, all quantities involved in an error-free simulation are elements
of N. In particular, the states of a Turing machine will be represented by ele-
ments of {1, ...,m} and each symbol of the tape will be considered as an element
of {0, 1, ..., k − 1}, where m, k ∈ N. Because we want to derive a simulation of
Turing machines robust to (small) perturbations, we will not use exact values,
but allow an error less than ε > 0 on all these quantities. Special care is thus
needed to ensure that the error does not amplify along the simulation. In this
section we study the propagation of errors throughout the iteration of polyno-
mial maps defined via polynomial interpolation.

9

Let M be a Turing machine, and take y as the symbol being currently read
and q as the current state. Consider also the following functions:

Qi(x) =
m∏
j=1
j 6=i

(x− j)
(i− j)

=
{

0, if x = 1, ..., i− 1, i+ 1, ...,m,
1, if x = i,

and

Si(x) =
k−1∏
j=0
j 6=i

(x− j)
(i− j)

=
{

0, if x = 0, ..., i− 1, i+ 1, ..., k − 1,
1, if x = i.

Suppose that on state i and symbol j, the state of the next configuration
is qi,j . Suppose also that |qi,j | ≤ N for some suitable constant N (e.g., in this
case, we may take N = m). Then the state that follows state q and symbol y
can be given by

qnext =
k−1∑
i=0

m∑
j=1

Si(y)Qj(q)qi,j . (10)

A similar procedure may be used to determine the next symbol to be written
and the next move. The main problem is that we don’t have access to the
exact values of q or y, but rather to some approximations q̄ and ȳ, respectively,
thereby obtaining q̄next. Hence, we want to increase the precision of q̄ and ȳ so
that |qnext − q̄next| < ε (recall that ε is an upper bound for the error allowed
during a computation). To achieve this precision, we only need to compute each
term in the sum given in (10) with an error less than ε/(km). This is verified
when

|Si(ȳ)Qj(q̄)− Si(y)Qj(q)| <
ε

kmN
, (11)

since this condition implies

|Si(ȳ)Qj(q̄)qi,j − Si(y)Qj(q)qi,j | <
ε

km
.

Lemma 11 Let n ∈ N and (x1, . . . , xn), (y1, . . . , yn) ∈ Rn. Let K > 0 be such
that |xi| ≤ K, |yi| ≤ K for i = 1, . . . , n. Then

|x1 . . . xn − y1 . . . yn| ≤ (|x1 − y1|+ . . .+ |xn − yn|)Kn−1.

Proof. The Lemma is trivial for n = 1. Suppose it holds for n ∈ N. Then

|x1 . . . xn+1 − y1 . . . yn+1|
≤ |x1 . . . xn+1 − x1 . . . xnyn+1|+ |x1 . . . xnyn+1 − y1 . . . yn+1|
= |x1 . . . xn| |xn+1 − yn+1|+ |x1 . . . xn − y1 . . . yn| |yn+1|
≤ Kn |xn+1 − yn+1|+ (|x1 − y1|+ . . .+ |xn − yn|)Kn−1K

= (|x1 − y1|+ . . .+ |xn − yn|+ |xn+1 − yn+1|)Kn,

which proves the statement by induction.
Note that (11) is satisfied if∣∣∣∣∣∣∣

k−1∏
r=0
r 6=i

(ȳ − r)
m∏
s=1
s 6=j

(q̄ − s)−
k−1∏
r=0
r 6=i

(y − r)
m∏
s=1
s6=j

(q − s)

∣∣∣∣∣∣∣ <
ε

kmN
, (12)

10

(because
∣∣∣∣∏k−1

r=0
r 6=i

(i− r)
∏m
s=1
s6=j

(j − s)
∣∣∣∣ ≥ 1). Take K = max{k− 1 + ε,m− 1 + ε}.

Applying Lemma 11, (12) will hold for

(k − 1)|y − ȳ|+ (m− 1)|q − q̄| < ε

kmNKm+k−3
.

Then, in order to have |qnext − q̄next| ≤ ε, it is sufficient to take ȳ and q̄ with
an error less than

|y − ȳ|, |q − q̄| < ε

kmNKm+k−3(k +m− 2)
. (13)

To achieve this, and supposing that ȳ and q̄ are initially given with an error less
than ε, we only have to apply j times the error-correcting function σ so that
σ[j](ȳ) and σ[j](q̄) have greater precision than the bound in (13). This condition
holds for every j satisfying

j ≥
⌈

log(kmNKm+k−3(k +m− 2))
− log λε

⌉
,

where λε is given by Proposition 5.

6 Robust simulations of Turing machines with
analytic maps

In this section we show, in a constructive manner, how to simulate a Turing
machine with an analytic map robust to (small) perturbations. We will first
prove the following theorem.

Theorem 12 Let ψ : N3 → N3 be the transition function of some Turing ma-
chine M . Then, given some 0 ≤ ε < 1/2, ψ admits an analytic extension
hM : R3 → R3 with the property that

‖(y1, y2, q)− (ȳ1, ȳ2, q̄)‖∞ ≤ ε ⇒ ‖ψ(y1, y2, q)− hM (ȳ1, ȳ2, q̄)‖∞ ≤ ε. (14)

Proof. We will show how to construct hM with analytic functions.

1. Determine the symbol being read. Let a0 be the symbol being actu-
ally read by the Turing machine M . Then ω(y1) = a0, where ω is given
by (8). We must show that the effect of the error present in ȳ1 can be
controlled. Since |y1 − ȳ1| ≤ ε,

|a0 − ω ◦ σ[l](ȳ1)| ≤ ε, with l =
⌈∣∣∣∣ log(ζε/ε)

log λε

∣∣∣∣⌉ , (15)

where ζε is given by (9). Then pick ȳ = ω ◦ σ[l](ȳ1) as an approxima-
tion of the symbol currently being read. Similarly, ω ◦ σ[l](ȳ2) gives an
approximation of a−1, with error bounded by ε.

2. Determine the next state. The map that returns the next state is
defined by polynomial interpolation. This can be done as follows. Let y
be the symbol being currently read and q the current state. Recall that

11

m denotes the number of states and k = 10 is the number of symbols. In
the absence of error on y and q

qnext =
9∑
i=0

m∑
j=1

 9∏
r=0
r 6=i

(y − r)
(i− r)


 m∏
s=1
s6=j

(q − s)
(j − s)

 qi,j ,

where qi,j is the state that follows symbol i and state j. However, we are
dealing with the approximations q̄ and ȳ. Therefore, we define instead (cf.
Section 5)

q̄next =
9∑
i=0

m∑
j=1

 9∏
r=0
r 6=i

(σ[v](ȳ)− r)
(i− r)


 m∏
s=1
s6=j

(σ[v](q̄)− s)
(j − s)

 qi,j , (16)

with

v =
⌈

log(10m2Km+7(m+ 8))
− log λε

⌉
, K = max{19/2,m− 1/2},

which yields |q̄next − qnext| ≤ ε.

3. Determine the symbol to be written on the tape. Using a con-
struction similar to the previous case, the symbol to be written, snext, can
be approximated with precision ε, i.e. |snext − s̄next| ≤ ε.

4. Determine the direction of the move for the head. Let h denote
the direction of the move of the head, where h = 0 denotes a move to
the left, h = 1 denotes a “no move”, and h = 2 denotes a move to the
right. Then, again, the “next move” hnext can be approximated by means
of a polynomial interpolation as in steps 2 and 3, therefore obtaining
|hnext − h̄next| ≤ ε.

5. Update the tape contents. In the absence of error, the “next value”
of y1, ynext1 , is given by polynomial interpolation as a function of y1, y2,
snext and hnext (recall that a0 = ω(y1)):

ynext1 = (10(y1 + snext − ω(y1)) + ω(y2))
(1− hnext)(2− hnext)

2

+ (y1 + snext − ω(y1))hnext(2− hnext) +
y1 − ω(y1)

10
hnext(1− hnext)

−2
.

To make the simulation robust, we define instead functions P̄1, P̄2, P̄3

which are intended to approximate the tape contents after the head moves
left, does not move, or moves right, respectively. Let H1 be a “sufficiently
good” approximation of hnext, yet to be determined. Then, ynext1 can be
approximated by

ȳnext1 = P̄1
1
2 (1−H1)(2−H1)+ P̄2H1(2−H1)+ P̄3 (− 1

2)H1(1−H1) (17)

12

with

P̄1 = 10(σ[d+4](ȳ1) + σ[d+4](s̄next)− σ[d+4](ȳ)) + σ[d+2] ◦ ω ◦ σ[l](ȳ2),

P̄2 = σ[d+2](ȳ1) + σ[d+2](s̄next)− σ[d+2](ȳ),

P̄3 = 1
10

(
σ[d+1](ȳ1)− σ[d+1](ȳ)

)
,

where d is given by Proposition 10 and l is given by (15), as we show
below.

First, notice that when exact values are used and H1 = hnext, one has
ȳnext1 = ynext1 . However, P̄1 in (17) depends on ȳ1, which is not a bounded
value. If we would simply take H1 = h̄next, the error of the term (1 −
H1)(2−H1)/2 will be arbitrarily amplified when multiplied by P̄1. Hence,
H1 must be a sharp estimate of hnext, proportional to ȳ1.

Our goal is to define H1 such that it approximates hnext with error at
most δ, i.e. |H1 − hnext| ≤ δ. Let P1 = 10(y1 + snext − ω(y1)) + ω(y2),
P2 = y1+snext−ω(y1), P3 = (y1−ω(y1))/10. To simplify the construction,
we first suppose that d = 0, i.e. ε ≤ 1/4. Since hnext ∈ {0, 1, 2},

|ynext1 − ȳnext1 |
≤ |P1 − P̄1|+ |P2 − P̄2|+ |P3 − P̄3|+ |4P̄1δ|+ |7P̄2δ|+ |3P̄3δ|
< 0.112 + |4P̄1δ|+ |7P̄2δ|+ |3P̄3δ|.

In the last inequality, |P1−P̄1| < 0.049, |P2−P̄2| < 0.05, |P3−P̄3| < 0.013
(note that approximate quantities have an error bounded by 1/4; applying
σ[i] to one of this term reduces the error to λi1/4/4, where i ∈ N). Moreover,
in the interpolation terms involving hnext, we use the assumption that
hnext ∈ {0, 1, 2} to eliminate hnext. For instance |(1−hnext)(2−hnext)| ≤
2. Then adding up the resulting terms, we get the 4, 7, and 3 present
in the equation above. Hence, |ynext1 − ȳnext1 | < 1/4 can be achieved if
|P̄1δ|, |P̄2δ|, |P̄3δ| < 0.009. Taking |P̄1δ| < 0.009, one has |δ| < 0.009/|P̄1|
or equivalently, considering (1) and the the fact that P1 < 10n+2 − 1
and |P1 − P̄1| < 0.049 imply |P̄1| < 10n+2, where n is the number of
symbols written on the right half of the tape encoded by y1, one has
|δ| < 9 × 10−n−5. Since (1.2 × 10n+4)−1 < 9 × 10−n−5, we may assume
that it should be

|δ| < 1
1.2× 10n+4

.

But ȳ1 > 10n − 1/2 implies 12000(ȳ1 + 1/2) > 1.2× 10n+4. Therefore, we
just have to take

|δ| < 1
12000 (ȳ1 + 1/2)

.

Using a similar procedure for the inequalities |P̄2δ| < 0.009 and |P̄3δ| <
0.009, one reaches the same bound.

So far we have seen that to guarantee that the error |ynext1 − ȳnext1 | is
less than ε, H1 has to approximate hnext within the above bound, which
depends on ȳ1. This can be achieved with

H1 = l3(h̄next, 12000 (ȳ1 + 1/2) + 2),

13

as shown in Proposition 10. Notice that the extra 2 in the second argument
of l3 is only needed to ensure that 12000 (ȳ1 + 1/2) + 2 ≥ 2, as required
by Proposition 10.

We can generalize this result to ε < 1/2 by applying d times the function
σ to all the terms in the expressions of P̄1, P̄2 and P̄3, where d is given by
Proposition 10. Therefore, ȳnext1 can be defined by (17).

Proceeding in the same manner for ȳnext2 , one may take

ȳnext2 = Q̄1
(1−H2)(2−H2)

2
+ Q̄2H2(2−H2) + Q̄3

H2(1−H2)
−2

, (18)

where

H2 = l3(h̄next, 12000 (ȳ2 + 1/4) + 2), Q̄3 = 10σ[d+4](ȳ2) + σ[d+2](s̄next),

Q̄1 =
σ[d+1](ȳ2)− σ[d+1] ◦ ω ◦ σ[l](ȳ2)

10
, Q̄2 = σ[d+2](ȳ2).

We then conclude that |ȳnext1 − ynext1 | < ε and |ȳnext2 − ynext2 | < ε.

To finish the proof of Theorem 12, we put together the maps described above
and define hM : R3 → R3 as hM (ȳ1, ȳ2, q̄) = (ȳnext1 , ȳnext2 , q̄next).

We shall now prove the main results of this paper.
Proof of Theorem 1. Let 0 ≤ δ < ε. Then, using Theorem 12, one can find
a map hM such that (14) holds. Let i ∈ N satisfy σ[i](ε) ≤ ε− δ. Define a map
fM = σ[i] ◦ hM . Then, if x0 ∈ N3 is an initial configuration,

‖x̄0 − x0‖∞ ≤ ε ⇒ ‖fM (x̄0)− ψ(x0)‖∞ ≤ ε− δ.

Thus, by the triangle inequality, if ‖x̄0 − x0‖∞ ≤ ε, then

‖f(x̄0)− ψ(x0)‖∞ ≤ ‖f(x̄0)− fM (x̄0)‖∞ + ‖fM (x̄0)− ψ(x0)‖∞
≤ δ + (ε− δ) = ε.

This proves the result for j = 1. For j > 1, we proceed by induction.

7 Robust simulations of Turing machines with
polynomial ODEs

We now show how the previous constructions can be implemented with ODEs
defined by PIVP functions. By Theorem 4, this ODE is equivalent to a polyno-
mial one.

Proof of Theorem 3. We adapt the construction in [Bra95] to simulate the
iteration of the transition function of a Turing Machine with ODEs, using our
Theorem 1 to generalize Branicky’s construction to analytic and robust flows,
defined with a polynomial IVP. In particular, since the function fM can be
obtained by composing polynomials, sin, cos, and arctan, we will show that
there is an IVP y′ = h(y, t), y(0) = (x0, kh) simulating in a robust manner
the given Turing machine, where each component of h is defined by composing

14

-2 -1 1 2

-2

-1

1

2

Figure 3: Graphical representation of the function r.

polynomials, sin, cos, and arctan. Then the result follows as a corollary of
Theorem 4.

In a first approach, we present Branicky’s idea following [Cam02b, p. 37],
where an integer function can be iterated by a system of ODEs defined with
functions that can be arbitrarily smooth (but still non-analytic). Before pre-
senting the whole procedure, we need some auxiliary functions. In particular,
let θj : R→ R, j ∈ N− {0, 1} be the function defined by

θj(x) = 0 if x < 0, θj(x) = xj if x ≥ 0.

This function can be seen [CMC00] as a Cj−1 version of Heaviside’s step function
θ(x), where θ(x) = 1 for x ≥ 0 and θ(x) = 0 for x < 0. Consider also the integer
part function r : R→ R defined by

r(0) = 0, r′(x− 1/4) = cjθj(− sin 2πx), (19)

where cj =
(∫ 1

0
θj(− sin 2πx)dx

)−1

. The function r satisfies r(x) = n, whenever
x ∈ [n − 1/4, n + 1/4], for all integer n, as illustrated in Fig. 3. Now consider
the following system of ODEs{

z′1 = λj(f̃(r(z2))− z1)3θj(sin 2πt),
z′2 = λj(r(z1)− z2)3θj(− sin 2πt),

(20)

where f̃ : R → R is an arbitrary extension to the reals of function f : N → N,
z1(0) = z2(0) = x0 ∈ N and λj > 8cj . Notice that, if k ∈ N, then for t ∈
[k, k+ 1/2], z′2(t) = 0, and for t ∈ [k− 1/2, k], z′1(t) = 0 (cf . Fig. 4). According
to the construction presented in the proof of Prop. 3.4.2 from [Cam02b], we
conclude that

∣∣f [k](x0)− z2(k)
∣∣ < 1/4 for all k ∈ N.

Now, if we want to iterate f with analytic functions, using a system similar
to (20), we cannot allow z′1 and z′2 to be 0 in half-unit intervals. Instead,
we allow them to be very close to zero, which will add some errors to the
system (20). Therefore, at time t = 1 both variables have values close to ψ(x0).
But Theorem 1 shows that there exists some analytic function robust to errors
that simulates ψ. This allows us to repeat the process an arbitrary number of
times, keeping the error under control.

15

0.5 1 1.5 2 2.5 3

1

2

3

4

Figure 4: Simulation of the iteration of the map f(n) = 2n via ODEs. The solid
line represents the variable z1 and the dashed line represents z2.

We begin with some preliminary results about the introduction of perturba-
tions in (20). Let φ : R→ R+

0 be some function satisfying
∫ 1/2

0
φ(t)dt > 0. It is

not difficult to see that Branicky’s simulation relies on an ODE of the form

z′ = −c(z − b)3φ(t), (21)

where c ≥ (2γ2
∫ 1/2

0
φ(t)dt)−1 and γ > 0 is the “targeting error”. For instance,

in the equation governing z′1 in (20), γ < 1/4, c = λj , and φ(t) = θj(sin 2πt).
Indeed, since (21) is a separable equation, it is easily shown that |z(1/2)− b| <
γ < 1/4. However, if we want to know what happens in a perturbed version
of Branicky’s simulation, it is important to understand what happens in the
following perturbed version of (21)

z′ = −c(z − b̄(t))3φ(t) + E(t), (22)

where
∣∣b̄(t)− b∣∣ ≤ ρ and |E(t)| ≤ δ, for ρ, δ ≥ 0, where 1/2 > δ ≥ ‖g − fM‖∞

(cf. the statement of the theorem). Let z̄ be the solution of this new ODE, with
initial condition z̄(0) = z̄0 and let z+, z− be the solutions of z′ = −c(z − b −
ρ)3φ(t) + δ and z′ = −c(z− b+ ρ)3φ(t)− δ, with initial conditions z+(0) = z+,0
and z−(0) = z−,0 respectively, where z+,0, z−,0 ∈ R satisfy z+,0 ≥ z̄0 ≥ z−,0.
By a standard differential inequality from the basic theory of ODEs (see e.g.
[HW95], Appendix T), it follows that z−(t) ≤ z̄(t) ≤ z+(t) for all t ∈ R. In fact,
a detailed analysis of the dynamics of the equation in [0, 1/2] shows that, in this
interval, |b− z+(1/2)| ≤ γ+ ρ+ δ/2, |b− z−(1/2)| ≤ γ+ ρ+ δ/2. Therefore, we
conclude that |z̄(1/2)− b| < γ + ρ + δ/2 regardless of the initial condition at
t = 0.

Now, in order to perform Branicky’s simulation, z′1(t) should be brought
very close to zero whenever t ∈ [1/2, 1]. This can be done with the help of the
function s defined by

s(t) =
1
2
(
sin2(2πt) + sin(2πt)

)
.

On [0, 1/2] s ranges between 0 and 1 (ranging in [3/4, 1] for x ∈ [0.16, 0.34])
and on [1/2, 1] s ranges between − 1

8 and 0. Therefore, we use the function

16

W0 : R× R+ → [0, 1] defined by

W0(t, y) = l2(s(t), y),

to replace φ(t) = θj(sin 2πt) in (20), since
∫ 1/2

0
W0(t, y) > 3/4×(0.34−0.16) > 0

(here we assume y ≥ 4) and we always have |W0(t, y)| < 1/y for t ∈ [1/2, 1] (i.e.
y allows the control of the error committed when z′1(t) is brought to zero).

We can now present the proof of the theorem. Let γ > 0 be such that
2γ + δ/2 ≤ ε < 1/4 (we suppose, without loss of generality, that δ/2 < ε), fM
be a map satisfying the conditions of Theorem 12 (replacing ε by γ), and let
x̄0 ∈ R3 be an approximation, with error ε, of some initial configuration x0.
Consider the system of differential equations z′ = gM (t, z) given by

z′1 = λ1(z1 − fM ◦ σ[n1](z2))3 φ1(t, z1, z2), (23)

z′2 = λ2(z2 − σ[n2](z1))3 φ2(t, z1, z2),

with initial conditions z1(0) = z2(0) = x̄0, where

φ1(t, z1, z2) = l2

(
s(t), λ1

γ (z1 − fM ◦ σ[n1](z2))4 + λ1
γ + 10

)
,

φ2(t, z1, z2) = l2

(
s(−t), λ2

γ (z2 − σ[n2](z1))4 + λ2
γ + 10

)
.

Because we want to show that the ODE z′ = gM (t, z) simulates M in a ro-
bust manner, we also assume that an error of absolute value not exceeding δ is
added to the right hand-side of the equations in (23). Our simulation variables
are z1, z2 and the control functions are φ1, φ2. Since φ1, φ2 are analytic they
cannot be constant on any open interval as in [Bra95]. However, our construc-
tion guarantees that one of the control functions is kept close to zero, while
the other reaches a value close to 1. For instance, on [0, 1/2] |s(−t)| ≤ 1/8
and, by Lemma 9 (note that, for all x ∈ R, |x|3 ≤ x4 + 1), φ2 is less than
γ(λ2

∥∥z2 − σ[n2](z1)
∥∥3

∞)−1. This ensures that ‖z′2(t)‖∞ ≤ γ for t ∈ [0, 1/2].
Since the initial condition has error bounded by ε, z′2 in (23) is perturbed by an
amount not exceeding δ, one has

‖z2(t)− x0‖∞ < (γ + δ)/2 + ε = η < 1
2 for t ∈ [0, 1/2].

Hence, for n1 large enough (depending only on η) ‖σ[n1](z2(t)) − x0‖ < γ for
t ∈ [0, 1/2]. Moreover, on [0.16, 0.34], s(t) ∈ [3/4, 1] and therefore φ1 is greater
or equal to 9/10 (due to the 10 that appears in the expressions of φ1 and φ2).
Thus, the behavior of z1 is given by (22) and

∥∥z1(1
2)− ψ(x0)

∥∥
∞ < 2γ+δ/2 ≤ ε.

For the interval [1/2, 1] the roles of z1 and z2 are reversed. Following the
reasoning done for z2 on [0, 1/2], one concludes that

‖z1(t)− ψ(x0)‖∞ < (γ + δ)/2 + ε < 1
2 for t ∈ [1/2, 1],

and that ‖z2(1)− fM (x0)‖∞ < 2γ + δ/2 ≤ ε. We can repeat this process for z1
and z2 on subsequent intervals, which shows that for j ∈ N, if t ∈ [j, j+ 1

2] then
‖z2(t)− ψ[j](x0)‖∞ ≤ ε.

Finally, an application of Theorem 4 to the system (23) implies that z1 and
z2 are solutions of a polynomial IVP, as claimed.

Notice that if we apply the error-contracting function σ to z1 we can make
the error arbitrarily small. Therefore, Theorem 3 implies Theorem 2.

17

8 Final remarks

We have shown that robust analytic maps and flows can simulate Turing ma-
chines, and that those flows can be defined by polynomial ODEs, filling some
existing gaps on the literature on this subject.

There are several connections of this work and previous results on conti-
nuous-time computational models. In particular, it is easily shown that the
function z in Theorem 3 is computable by Shannon’s General Purpose Analog
Computer (GPAC) [Sha41], [PE74], [GC03]. Hence, it follows that GPACs can
simulate Turing machines and, according to [GC03], z also belongs to the class
of (analytic) real recursive functions [0, 1,−1,K, U ;COMP, I] (see [Cam02a]),
where K is an appropriate set of constants.

Incidentally, the present work also provides undecidability results for poly-
nomial IVPs. For instance, given a polynomial IVP and some open set on phase
space, the question of knowing whether its solution passes through this open set
is undecidable. To see this, just consider an IVP simulating an universal Turing
machine, and an open set coding the halting state.

It has been recently shown [GZB] that fundamental quantities like the max-
imal interval of existence for computable IVPs defined with analytic ODEs are,
in general, recursively enumerable but non-computable. However, that question
is still open for polynomial IVPs.

Nonetheless, it is known that solutions of polynomial IVPs with computable
initial conditions and coefficients are computable on their domain of existence
[GZB]. That result, combined with the lower bounds we prove in this paper,
suggest that there may be a close relation, at least from a computational point
of view, between polynomial IVPs and Turing machines.
Acknowledgments. DG and MC wish to thank Carlos Lourenço and Olivier
Bournez for helpful discussions. Our interest in the questions addressed in this
paper was raised by past discussions with Félix Costa and Cris Moore. DG and
MC were partially supported by Fundação para a Ciência e a Tecnologia and
EU FEDER POCTI/POCI via CLC, project ConTComp POCTI/MAT/45978
/2002, grant SFRH/BD/17436/2004 (DG), and within the initiative RealNComp
of SQIG - IT. Additional support to DG was also provided by the Fundação
Calouste Gulbenkian through the Programa Gulbenkian de Est́ımulo à Inves-
tigação. JB acknowledges partial support by CAMGSD through FCT and
POCI/FEDER.

References

[Atk89] K. E. Atkinson. An Introduction to Numerical Analysis. John Wiley
& Sons, 2nd edition, 1989.

[Bra95] M. S. Branicky. Universal computation and other capabilities of
hybrid and continuous dynamical systems. Theoret. Comput. Sci.,
138(1):67–100, 1995.

[Cam02a] M. L. Campagnolo. The complexity of real recursive functions. In
C. S. Calude, M. J. Dinneen, and F. Peper, editors, Unconventional
Models of Computation (UMC’02), LNCS 2509, pages 1–14. Springer,
2002.

18

[Cam02b] M. L. Campagnolo. Computational Complexity of Real Valued Recur-
sive Functions and Analog Circuits. PhD thesis, Instituto Superior
Técnico/Universidade Técnica de Lisboa, 2002.

[Cas96] M. Casey. The dynamics of discrete-time computation, with applica-
tion to recurrent neural networks and finite state machine extraction.
Neural Comp., 8:1135–1178, 1996.

[Cas98] M. Casey. Correction to proof that recurrent neural networks can
robustly recognize only regular languages. Neural Comp., 10:1067–
1069, 1998.

[CL55] E. A. Coddington and N. Levinson. Theory of Ordinary Differential
Equations. Mc-Graw-Hill, 1955.

[CMC00] M. L. Campagnolo, C. Moore, and J. F. Costa. Iteration, inequalities,
and differentiability in analog computers. J. Complexity, 16(4):642–
660, 2000.

[CMC02] M. L. Campagnolo, C. Moore, and J. F. Costa. An analog character-
ization of the Grzegorczyk hierarchy. J. Complexity, 18(4):977–1000,
2002.

[GC03] D. S. Graça and J. F. Costa. Analog computers and recursive func-
tions over the reals. J. Complexity, 19(5):644–664, 2003.

[GCB05] D. S. Graça, M. L. Campagnolo, and J. Buescu. Robust simulations
of Turing machines with analytic maps and flows. In S. B. Cooper,
B. Löwe, and L. Torenvliet, editors, CiE 2005: New Computational
Paradigms, LNCS 3526, pages 169–179. Springer, 2005.

[GH83] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical
Systems, and Bifurcation of Vector Fields. Springer, 1983.

[GZB] D.S. Graça, N. Zhong, and J. Buescu. Computability, noncomputabil-
ity and undecidability of maximal intervals of IVPs. to appear.

[HS74] M. W. Hirsch and S. Smale. Differential Equations, Dynamical Sys-
tems, and Linear Algebra. Academic Press, 1974.

[HW95] J. H. Hubbard and B. H. West. Differential Equations: A Dynamical
Systems Approach - Higher-Dimensional Systems. Springer, 1995.

[KCG94] P. Koiran, M. Cosnard, and M. Garzon. Computability with low-
dimensional dynamical systems. Theoret. Comput. Sci., 132:113–128,
1994.

[KM99] P. Koiran and C. Moore. Closed-form analytic maps in one and
two dimensions can simulate universal Turing machines. Theoret.
Comput. Sci., 210(1):217–223, 1999.

[Koi96] P. Koiran. A family of universal recurrent networks. Theoret. Com-
put. Sci., 168(2):473–480, 1996.

19

[Lef65] S. Lefshetz. Differential Equations: Geometric Theory. Interscience,
2nd edition, 1965.

[MC04] J. Mycka and J. F. Costa. Real recursive functions and their hierar-
chy. J. Complexity, 20(6):835–857, 2004.

[MO98] W. Maass and P. Orponen. On the effect of analog noise in discrete-
time analog computations. Neural Comput., 10(5):1071–1095, 1998.

[Moo90] C. Moore. Unpredictability and undecidability in dynamical systems.
Phys. Rev. Lett., 64(20):2354–2357, 1990.

[Moo98] C. Moore. Finite-dimensional analog computers: Flows, maps, and
recurrent neural networks. In C. Calude, J. Casti, and M. Dinneen,
editors, 1st International Conference on Unconventional Models of
Computation - UMC’98, pages 59–71. Springer, 1998.

[PE74] M. B. Pour-El. Abstract computability and its relations to the general
purpose analog computer. Trans. Amer. Math. Soc., 199:1–28, 1974.

[PER81] M. B. Pour-El and J. I. Richards. The wave equation with computable
initial data such that its unique solution is not computable. Adv.
Math., 39:215–239, 1981.

[PEZ97] M. B. Pour-El and N. Zhong. The wave equation with computable
initial data whose unique solution is nowhere computable. Math. Log.
Quart., 43:499–509, 1997.

[Rit48] J. F. Ritt. Integration in Finite Terms. Columbia Univ. Press, 1948.

[Ros72] M. Rosenlicht. Integration in finite terms. Amer. Math. Monthly,
79(9):963–972, 1972.

[RS85] L. A. Rubel and F. Singer. A differentially algebraic elimination
theorem with application to analog computability in the calculus of
variations. Proc. Amer. Math. Soc., 94(4):653–658, 1985.

[Sha41] C. E. Shannon. Mathematical theory of the differential analyzer. J.
Math. Phys. MIT, 20:337–354, 1941.

[Sie99] H. T. Siegelmann. Neural Networks and Analog Computation: Be-
yond the Turing Limit. Birkhäuser, 1999.

[SS95] H. T. Siegelmann and E. D. Sontag. On the computational power of
neural networks. J. Comput. System Sci., 50(1):132–150, 1995.

[Via01] M. Viana. Dynamical systems: Moving into the next century. In
B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001
and Beyond, pages 1167–1178. Springer, 2001.

[WZ02] K. Weihrauch and N. Zhong. Is wave propagation computable or can
wave computers beat the Turing machine? Proc. London Math. Soc.,
85(3):312–332, 2002.

20

