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Abstract

Consider the initial-value problem with computable parameters{
dx
dt

= p(t, x)
x(t0) = x0,

where p : Rn+1 → Rn is a vector of polynomials and (t0, x0) ∈ Rn+1.
We show that the problem of determining whether the maximal interval
of definition of this initial-value problem is bounded or not is in general
undecidable.

1 Introduction

Differential equations are a powerful tool to model natural phenomena. Their
use is transversal to many fields and applications can be found ranging from
fields like physics or chemistry up to biology or economics. Among these, much
attention is devoted to analytic ordinary differential equations (ODEs) that
yield initial-value problems {

x′ = f(t, x)
x(t0) = x0

(1)

where f : Rn+1 → Rn is an analytic function. In practical applications, like
Lorenz equations in meteorology or Lotka-Volterra equations for predator-prey
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system [HS74], this IVP often reduces to an IVP of the type{
x′ = p(t, x)
x(t0) = x0

(2)

where p is a vector of polynomials. Indeed, it can be shown (see Theorem 10)
that if each component of f in (1) can be written as the composition of many
of the standard function of analysis like polynomials, sin, ex, etc. (in analytical
terms, as an element of the elementary function field), then (1) can be written
as an equivalent system of the type (2) of suitably larger degree.

It is well known from the basic existence-uniqueness theory of ODEs [CL55],
[Lef65] that if f is analytic, then the IVP (1) has a unique solution x(t) defined
on a maximal interval of existence I = (α, β) ⊂ R that is analytic on I [Arn78].
Actually, f only needs to be continuous and locally Lipschitz in the second
argument so that this maximal interval exists. The interval is maximal in the
sense that either α = −∞ or x(t) is unbounded as t → α+ (similar conditions
apply to β).

A question of interest is the following: is it possible to design an automated
method that, on input (f, t0, x0), gives as output the maximal interval of exis-
tence for the solution of (1)? In computability theory, e.g. [Sip97], [HMU01], it
is well known that some problems cannot be answered by the use of an algorithm
(more precisely, by the use of a Turing machine). Such problems are labeled
undecidable and many examples are known. The most prominent undecidable
problem is the Halting Problem: given a universal Turing machine and some
input to it, decide whether the machine eventually halts or not. To address this
kind of questions for IVPs, we have to resort to notions of computability over the
reals. In particular, we use the computable analysis approach [PER89], [Ko91],
[Wei00]. The idea underlying this theory is to compute an approximation of
the output with arbitrary precision from a suitable approximation of the input.
More details can be found in Section 2. Using that approach, it was shown
in [GZB07] that given an analytic IVP (1), defined with computable data, its
corresponding maximal interval may be noncomputable.

Noncomputability results related to initial-value problems of differential equa-
tions are not new. For example, Pour-El and Richards [PER79] showed that if
we relax the condition of analyticity in the IVP (1) defined with computable
data, it can have noncomputable solutions. In [PER81], [PEZ97] it is shown
that there is a three-dimensional wave equation, defined with computable data,
such that the unique solution is nowhere computable. However, in these exam-
ples, noncomputability is not “genuine” in the sense that the problems under
study are ill-posed: either the solution is not unique or it is unstable [WZ02].
In other words, ill-posedness was at the origin of noncomputability in those
examples. In contrast, an analytic IVP (1) is classically well-posed and, conse-
quently, the noncomputability results do not seem to reflect computational and
well-posedness deficiencies inherited by the problems.

Motivated by the noncomputability result obtained in [GZB07], this latter
paper also addresses the following problem: while it is not possible to compute
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the maximal interval of (1) is it possible to compute some partial information
about it? In particular, is it possible to decide if this maximal interval is bounded
or not?

This question has interest on its own for the following reason. In many
problems, we implicitly assume that t is defined for “all time”. For example, if
one wants to compute things like sinks or limit cycles associated with ODEs,
this only makes sense if the solution of the ODE is defined for all times t > t0.
This is also implicitly assumed in problems like reachability [AD90], [AMP95],
[HKPV98], [Bou99], [BT00], etc. For this reason, those problems only make
sense when associated with ODEs for which the maximal interval is unbounded.
So, it would be interesting to know which are the “maximal” classes of functions
f for which the boundedness problem is decidable.

In [GZB07], it was shown that for the general class of analytic functions,
the boundedness problem of the maximal interval is undecidable. Here we will
deepen this result: we will show that the boundedness problem is still unde-
cidable if we pick the class of polynomial functions of degree 56. This result
is shown using different techniques from those employed in [GZB07]. Since the
boundedness problem is decidable for linear differential functions this suggests
that the boundary between decidability/undecidability lies in the class of poly-
nomials of degree n, for some 2 ≤ n ≤ 56.

2 Preliminaries

Let us recall some results from the theory of ODEs. In particular, we review
the notion of maximal interval for ODEs.

Definition 1 Let E ⊆ Rl be an open set. A function f : E → Rn is called
locally Lipschitz on E if for every compact set Λ ⊆ E there is a constant KΛ ≥ 0
such that

‖f(x)− f(y)‖ ≤ KΛ ‖x− y‖ , for all x, y ∈ Λ.

Here we deal with the case where E ⊆ Rn+1. Hence, when considering a
function f : E → Rn with argument (t, x), we refer to t ∈ R as the first argument
and x ∈ Rn as the second argument of f .

Definition 2 Let E ⊆ Rn+1 be an open set. A function f : E → Rn is called
locally Lipschitz in the second argument, on E, if for every compact set Λ ⊆ E
there is a constant KΛ ≥ 0 such that

‖f(t, x)− f(t, y)‖ ≤ KΛ ‖x− y‖ , for all (t, x), (t, y) ∈ Λ.

The following classical lemma [Hal80] asserts that C1 functions are locally
Lipschitz, and hence locally Lipschitz in the second argument.

Lemma 3 If f : E → Rn is of class C1 over E ⊆ Rl, then f is locally Lipschitz
on E.
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The following result introduces the notion of maximal interval for ODEs and
follows as an immediate consequence of the fundamental existence-uniqueness
theory for the initial-value problem (1), where the analyticity condition is dropped
for f [CL55], [Lef65], [Hal80]

Proposition 4 Let E be an open subset of Rn+1 and assume that f : E → Rn

is continuous on E and locally Lipschitz in the second argument. Then for each
(t0, x0) ∈ E, the problem (1) has a unique solution x(t) defined on a maximal
interval (α, β), on which it is C1. The maximal interval is open and has the
property that, if β < +∞ (resp. α > −∞), either (t, x(t)) approaches the
boundary of E or x(t) is unbounded as t→ β − (resp. t→ α+).

Note that, as a particular case, when E = Rn+1 and β < ∞, x(t) is un-
bounded as t→ β −. This will be the case under study in this paper.

Next we recall basic notions from computable analysis. The idea underlying
computable analysis is to extend the classical computability theory so that it
might deal with real quantities. See [Wei00] for an up-to-date monograph on
computable analysis from the computability point of view, [Ko91] for a presen-
tation from a complexity point of view, or [PER89] for a good introduction to
the subject.

Definition 5 A sequence {rn} of rational numbers is called a ρ-name of a real
number x if there exist three functions a, b, c from N to N, such that for all
n ∈ N, rn = (−1)a(n) b(n)

c(n)+1 and

|rn − x| ≤ 1
2n
. (3)

In the conditions of the above definition, we say that the ρ-name {rn} is given
as an oracle to an oracle Turing machine, if the oracle to be used is (a, b, c). The
notion of the ρ-name can be extended to Rl: a sequence {(r1n, r2n, . . . , rln)}n∈N
of rational vectors is called a ρ-name of x = (x1, x2, . . . , xl) ∈ Rl if {rjn}n∈N is
a ρ-name of xj , 1 ≤ j ≤ l.

Definition 6 A real number x is called computable if a, b, and c in (3) are
computable (recursive) functions.

Note that the above definition implies that every rational number must be
computable. We now define the notion of computable function over R.

Definition 7 A function f : Rm → Rk is computable if there is an oracle
Turing machine such that for any input n ∈ N (accuracy) and any ρ-name of
x ∈ E given as an oracle, the machine will output a rational vector r satisfying
‖r − f(x)‖∞ ≤ 2−n, where ‖(y1, . . . , yl)‖∞ = max1≤i≤l |yi| for all (y1, . . . , yl) ∈
Rl.

In particular, it is not difficult to show that polynomials having computable
coefficients are computable functions.
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3 Simulating Turing machines

Several authors have proved that finite dimensional maps can simulate Turing
machines. The general approach is to associate each configuration of a Turing
machine to a point of Rn, and to show that there is a dynamical system with
state space in Rn that embeds its evolution. This is done, for example, in
[Moo90], [KCG94], [SS95], [KM99]. Here we use the approach presented in
[GCB05].

Without loss of generality, consider a Turing machine M using 10 symbols,
the blank symbol B = 0, and symbols 1, 2, ...9. Let

...B B B a−k a−k+1... a−1 a0 a1... anBBB...

represent the tape contents of the Turing machine M. We assume that the head
reads one of the symbols, a0, and ai ∈ {0, 1, ..., 9} for all i. We also suppose
that M has m states, represented by numbers 1 through m. For convenience,
we consider that if the machine reaches a halting configuration it moves to the
same configuration. We assume that, in each transition, the head either moves
to the left, moves to the right, or does not move. Take

y1 = a0 + a110 + ...+ an10n y2 = a−1 + a−210 + ...+ a−k10k−1

and let q be the state associated with the current configuration. Then the triple
(y1, y2, q) ∈ N3 gives the current configuration of M. In [GCB05] it is shown
that the transition function of M, ψM : N3 → N3, can be embedded into an
analytic function f : R3 → R3, in an error-robust manner.

However, what we would like to do is to simulate the evolution of a Turing
machine with a polynomial ODE, to obtain undecidability results about (2).
In other words, we would like to have a system (2), where the input x0 of the
Turing machine is coded in the initial condition, and y(n) gives the configuration
of the Turing machine at time n ∈ N, where y is the solution of (2).

This is achieved with the following result.1

Theorem 8 ([GCB05]) Let ψM : N3 → N3 be the transition function of a
Turing machine M , under the encoding described above and let ε satisfy 0 <
ε ≤ 1/4. Then there is a computable analytic function fM : R7 → R6 such that
the ODE z′ = fM (t, z) simulates M in the following sense: for all x0 ∈ N3,
the solution z(t) of the IVP defined by the above ODE plus the initial condition
(x0, x0), defined for t0 = 0, satisfies∥∥∥z2(k)− ψ

[k]
M (x0)

∥∥∥
∞
≤ ε,

for all k ∈ N, where z ≡ (z1, z2) with z1, z2 ∈ R3.

Remark 9 In the conditions of the above theorem:
1We take ‖f‖∞ = supx∈R ‖f(x)‖∞ , where f is a real function. If f : A → A is a function,

then f [k] denotes the kth iterate of f .
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1. fM is a composition of polynomials, sin, cos, arctan;

2. although Theorem 8 only gives the behavior of z on integer values of t,
its behavior in between is essentially monotone. More precisely, on any
interval [k, k + 1], z1 varies componentwise monotonically from ψ

[k]
M (x0)

to ψ
[k+1]
M (x0), with an error bounded by ε + δ, where δ can be chosen to

be less than 1/4. The same applies to z2, which behaves like z1, but with
delay 1/2. (See [GCB05] and [GCB] for details.)

However, this is not enough for our needs. What we would like to have is
that fM is a vector of polynomials so that we can derive undecidability results
about (2). First we remark that sin, cos, and arctan are solutions of IVPs of
the type (2). Then the following result, taken from [GCB], becomes useful.

Theorem 10 Consider the IVP{
x′ = f(t, x),
x(t0) = x0,

(4)

where f : Rl+1 → Rl and each component of f is a composition of polynomials
and functions that are solutions of IVP of the type (2). Then there exist n ≥ l,
a polynomial p : Rn+1 → Rn and a y0 ∈ Rn such that the solution of (4) is
given by the first l components of y = (y1, ..., yn), where y is the solution of the
polynomial IVP {

y′ = p(t, y),
y(t0) = y0.

The proof of Theorem 10 in [GCB] is constructive, and preserves the com-
putability of the parameters of the IVP. From Theorem 8, the Remark following
it, and Theorem 10, we obtain the following result.

Lemma 11 Let M be a Turing machine with m states, coded as elements of
{1, . . . ,m}, where m is the halting state. Then M can be simulated by an IVP
(2) as follows:

1. The initial configuration (input) x0 of the TM is coded in the initial con-
ditions of the IVP: (x1(0), . . . , x6(0)) = (x0, x0) and (x7(0), . . . , xn(0)) =
α ∈ Rn−6 with n ≥ 6 and where α is computable;

2. Let q(k) ∈ {1, . . . ,m} denote the state of the TM at step k. Then there is
one variable xq of the IVP that approximates q(k) with error bounded by
5/16 in each time interval [k, k+1/2], where k ∈ N. This variable updates
in a monotone manner in the time interval [k + 1/2, k + 1].

3. The polynomial p in (2) and the value α are computable.

For point 2, we used Theorem 8 with ε = 1/4 and the Remark following it,
where we have set δ = 1/16. If xq is the variable from z2 that encodes the state,
then we get point 3.
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4 The result

We now state and prove the main result of the paper.

Theorem 12 The following problem is undecidable: “Given p : Rn+1 → Rn

with polynomial components and (t0, x0) ∈ R × Rn, where p and (t0, x0) are
computable, decide whether the maximal interval of the IVP (2) is bounded or
not”.

Proof. Let M be a universal Turing machine. Suppose that M has m states,
coded as elements of {1, . . . ,m}, where m is the halting state. From Lemma 11,
there is a polynomial IVP (2), with solution x, that satisfies for every k ∈ N{

xq(t) ≤ m− 11
16 if M has not halted at step k and t ≤ k

xq(t) ≥ m− 5
16 if M has already halted at step k and t ≥ k.

(5)

Consider the IVP{
z′1 = xq − (m− 1/2)
z2 = 1

z1

⇐⇒
{
z′1 = xq − (m− 1/2)
z′2 = ((m− 1/2)− xq)z2

2
(6)

where z1(0) = z2(0) = −1. Since xq appears as a component, we assume that
this IVP is coupled with the polynomial IVP defined by Proposition 11. It is
easy to see that while M hasn’t halted, xq − (m − 1/2) ≤ −3/16. Thus z1
keeps decreasing and the IVP is defined in (0,+∞), i.e. the maximal interval is
unbounded, if M never halts.

On the other hand, if M eventually halts, z1 starts increasing at a rate of
at least 3/16 and will do that forever. So, at some time it will have to assume
the value 0. When this happens, a singularity appears for z2 and the maximal
interval is therefore (right-)bounded. For negative values of t just replace t by
(−t) in the polynomial IVP (2) and assume t to be positive. It can be shown that
the behavior of the system will be similar, and we reach the same conclusions
for the left bound of the maximal interval. So M halts iff the maximal interval
of the polynomial IVP (6) is bounded, i.e. boundedness is undecidable.

Actually, if we are given the description of a universal Turing machine, we
can constructively define a set of polynomial ODEs simulating it and adapt in
a constructive manner the proof of Theorem 4. If we use the small universal
Turing machine presented in [Rog96], having 4 states and 6 symbols, we obtain
the following theorem, whose full proof can be found in [Gra].

Theorem 13 There is a vector p : Rn+1 → Rn, with n ≥ 1, constituted by
computable polynomials, where each component has degree less than or equal to
56, such that the following problem is undecidable: “Given computable (t0, x0) ∈
R×Rn, decide whether the maximal interval of the IVP (2) is bounded or not”.

Let us remark that, while the boundedness problem of the maximal interval
for unrestricted polynomial IVPs is in general undecidable, it is not the case
for some subclasses of polynomials. For instance, the boundedness problem is
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decidable for the class of linear differential equations or for the class of one-
dimensional autonomous differential equations where f is a polynomial of any
degree. It would be interesting to investigate maximal classes with the above
property.

Theorem 14 Consider the IVP (2) with p(t, x) = A(t)x + h(t), where A and
h are m × m and m × 1 matrices, respectively, and each entry Ajk : R → R,
hj : R → R is a continuous function, for j, k = 1, . . . ,m. Then the maximal
interval associated with this IVP is (−∞,∞). In particular, the boundedness
problem is decidable for linear problems.

Proof. See [Hal80, p. 79].
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