
Effective Computability of Solutions of Ordinary

Differential Equations

The Thousand Monkeys Approach

Pieter Collins
Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands

Daniel S. Graça
DM/FCT da Universidade do Algarve, Faro, Portugal

& SQIG/Instituto de Telecomunicações, Lisboa, Portugal

September 16, 2011

Abstract

In this note we consider the computability of the solution of the initial-
value problem for ordinary differential equations with continuous right-
hand side. We present algorithms for the computation of the solution
using the “thousand monkeys” approach, in which we generate all possi-
ble solution tubes, and then check which are valid. In this way, we show
that the solution of a differential equation defined by a locally Lipschitz
function is computable even if the function is not effectively locally Lips-
chitz. We also recover a result of Ruohonen, in which it is shown that if
the solution is unique, then it is computable, even if the right-hand side is
not locally Lipschitz. We also prove that the maximal interval of existence
for the solution must be effectively enumerable open, and give an example
of a computable locally Lipschitz function which is not effectively locally
Lipschitz.

1 Introduction

In this paper we study the computability of initial-value problems defined with
ordinary differential equations. Let f : R× Rn → Rn be some function defined
on a closed box B ⊆ R× Rn and consider the initial-value problem defined by{

ẋ = f(t, x)
x(0) = x0.

(1)

For simplicity of discussion, though not essential, we took the initial time to be
t0 = 0. As shown in [Abe70], [Abe80], [Ko91], if f satisfies a Lipschitz condition
over B, then the unique solution of (1) can be computed from x0 and f . The idea
is to use the classical result that shows that if f satisfies a Lipschitz condition
on R, then the solution of (1) is unique — see e.g. [CL55] — by noticing that
its proof is effective.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sapientia

https://core.ac.uk/display/61500752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A question of interest is to determine which are the “weakest” conditions
that f must satisfy in order that one might be able to compute the solution of
(1). We remark that if the solution of (1) is non-unique, than it can happen
that none of the solutions is computable [Abe71], [PER79], though the solution
set is upper-semicontinuous, and can be shown to be upper-semicomputable. In
order to prevent pathological cases, we assume in this paper that: (i) f should
be continuous (Peano’s existence theorem guarantees the existence of at least
one solution in this case) and (ii) the solution of (1) should be unique.

The standard condition used in literature to study solutions of (1) is to
assume that f is Lipschitz. For instance it is shown in [Moo66], [PBV95] that the
solution of Lipschitz differential inclusions ẋ ∈ F (t, x), where F is a set-valued
function, subjected to the condition x(0) ∈ X, can be computed. Related
results have also been obtained in [Gab07] for one-sided Lipschitz functions.
While differential inclusions are different in form from (1), under appropriate
circumstances they can be useful to study the problem (1). The general idea is
to have a sequence of set-valued functions Fn and initial sets Xn which converge
to f and x0, respectively, such that under some mild assumptions, the solution
set of ẋ ∈ Fn(t, x), x(t0) ∈ X0 will converge to the solution of (1).

The technique sketched above was, for example, adapted in [Ruo96], to show
computability of the solution for (1) if f is bounded or if its growth follows a
very restricted condition which prevents, for instance, that this result can be
applied to show computability of the solution of ẋ = −x2, x(1) = 1 over (0,+∞)
(with unique solution x(t) = 1/t).

The results by Ruohonen have the desirable characteristic of not demanding
f to be globally Lipschitz on its domain. While the latter condition ensures that
a solution for (1) exists and is unique, it may be too strong as a requirement.
This has already been noticed by mathematicians when establishing existence
and uniqueness results for solutions of (1) in unbounded domains, where a Lip-
schitz condition usually doesn’t hold. To circumvent this problem, a possible
approach is to require the Lipschitz condition to be satisfied only locally. In
these conditions, the solution of (1) can be shown unique — see e.g. [CL55].

Following this reasoning, in [GZB09], the authors introduce a notion of effec-
tively locally Lipschitz functions and show that if f in (1) has this property, then
the solution of (1) can be computed from f and x0 over the maximal interval of
existence. The existence of such maximal interval follows from standard results
from the theory of ODEs, that ensure that when computing the solution of (1)
one can extend it until the solution gets unbounded or reaches the boundary
of region where f is defined. In particular, the results in [GZB09] yield the
(expected) computability of the solution of the initial-value problem ẋ = −x2,
x(1) = 1 over (0,+∞). The effectivity in this definition is required in order
that one might be able to pick for each compact set an appropriate Lipschitz
constant to be used on the computation of the solution as soon as it reaches the
aforementioned compact set.

In this paper we will prove that we can compute the solution of (1) requiring
only that f is continuous and that (1) has a unique solution. We prove this
result by giving an explicit algorithm based on the thousand monkey theorem
— a thousand monkeys1 hitting keys at random on a typewriter keyboard will
eventually type a particular chosen text. The idea is that we can approximate

1actually, one (extremely long-lived) monkey suffices

2

the solution of ẋ = f(t, x), x(0) ∈ X0 from above with a union of boxes, with
arbitrary precision. These boxes satisfy some relations between them, which
only apply to this kind of covering, which can be effectively checked. Now we
just need to use the thousand monkey theorem to run computations over n and
corresponding finite sequences of boxes. We can check whether each sequence of
boxes constitute a valid covering, and we know that such a covering approaching
the solution of ẋ = f(t, x), x(0) ∈ X0 with an arbitrary preassigned precision
exists. Since, as we will see, the solution set of ẋ = f(t, x), x(0) ∈ Xn will
converge to the solution of (1), it is enough to keep computing these sequences
until we get a finite sequence of boxes which cover the solution at time t with
the desired precision.

We give two versions of the algorithm. In the simpler version, which is suf-
ficient to compute the solution of a locally Lipschitz differential equation, we
bound the solution by a single box at all times. However, we give a counterex-
ample demonstrating that this algorithm is not powerful enough to compute the
solution of a non-Lipschitz differential equation even if the solution is unique.
Instead, in the non-Lipschitz case we need to allow the solution bound to be a
finite union of boxes, giving a slightly more complicated algorithm.

We now briefly sketch the contents of the paper. In Section 2 we present
some standard results from ODEs, computable analysis, and Analysis that will
support the main results of the paper. In Section 3 we show that our results are
not a special case of those obtained in [GZB09] since, as we will prove, there
are computable functions which are locally Lipschitz (guaranteeing uniqueness
of the solution), but not effectively locally Lipschitz. In Section 4 we prove that
the solution of (1) can be computed provided f is continuous and the solution
of (1) is unique. To achieve this result we present a first algorithm, that as we
will see is not enough to compute the solution of (1), but will serve as a useful
subroutine for a second algorithm that computes the desired solution.

2 Preliminaries

This section introduces concepts and results from the theory of ODEs, from
computable analysis, and from Analysis. For more details the reader is referred
to [CL55], [Lef65] for ODEs, and [PER89], [Ko91], [Wei00] for computable anal-
ysis.

2.1 Standard results from ODEs

We now recall some basic results concerning initial-value problems defined with
ODEs. Let us consider the initial-value problem (1). The following theorem can
be found in [Har82] (the expressions t→ α+ and t→ β− mean that t converges
to α from above and to β from below, respectively).

Theorem 1 (Maximal interval of existence) Let E be a domain over Rm+1

and f : E → Rm be a continuous function. Let y be a solution of (1) on some
interval. Then y can be extended (as a solution of (1)) over a maximal interval
of existence (α, β). Also, if (α, β) is a maximal interval of existence, then y(t)
tends to the boundary of E as t→ α+ and t→ β−.

3

In particular, if f satisfies a local Lipschitz condition in the second argument,
this meaning that for each compact K ⊆ E there exists some constant L > 0
such that

|f(t, x)− f(t, y)| ≤ L |x− y| whenever (t, x), (t, y) ∈ K,

it can be shown [CL55], [Lef65] that the maximal interval (α, β) is unique, and
that (1) admits one and only one solution there.

2.2 Standard results from computability

We now continue our discussion with a presentation of fundamental concepts of
computable analysis, which provides a notion of computability over the reals.

We define computability in terms of open rational boxes, which are sets of
the form (a1, b1) × · · · × (am, bm) ⊂ Rm where ai, bi ∈ Q for i = 1, . . . ,m. We
could equally use open rational balls B(a, r) = {x ∈ R : ‖x − a‖ < r}, where
a ∈ Qm and r ∈ Q with r > 0.

Definition 2

1. A name for a point x ∈ Rm is a sequence of nested open rational boxes
(In) such that ∩∞n=1In = {x}.

2. A name for an open set U ⊂ Rm is a sequence of open rational boxes (In)
such that In ⊂ U for all n ∈ N, and U =

⋃∞
n=1 In.

3. A name for a function f is a list of all pairs of open rational boxes (I, J)
such that f(I) ⊆ J .

Definition 3 A point x ∈ Rm is computable if it has a computable name. An
open set U ⊂ Rm is recursively-enumerable if it has a computable name. A
function f is computable it has a computable name.

If Y and Z are spaces with an associated naming system, then an operator
F : Y → Z is computable if there is a computable function which associates each
name of y ∈ Y to a name of F (y) ∈ Z.

The following definition was introduced in [GZB09], and gives a computable
counterpart for the notion of a function which is locally Lipschitz in the second
argument.

Definition 4 Let E =
⋃∞
n=0B(an, rn) ⊆ Rm be a recursively enumerable open

set, where an ∈ Qm and rn ∈ Q yield computable sequences satisfying B(an, rn) ⊆
E. A function f : E → Rm is called effectively locally Lipschitz in the second
argument if there exists a computable sequence {Kn} of positive integers such
that

|f(t, x)− f(t, y)| ≤ Kn |y − x| whenever (t, x), (t, y) ∈ B(an, rn).

The following result was proved in [GZB09].

Theorem 5 Let E ⊆ Rm+1 be a recursively enumerable open set and f : E →
Rm be an effectively locally Lipschitz function in the second argument. Let
(α, β) be the maximal interval of existence of the solution x(t) of the initial-
value problem (1), where (0, x0) is a computable point in E. Then:

4

1. The operator (f, x0) 7→ (α, β) is semicomputable (i.e. α can be computed
from above and β can be computed from below), and

2. The operator (f, x0) 7→ x(·) is computable.

2.3 Standard results from analysis

In this section we state two classical theorems that are the main tools in finding
solutions of differential equations.

Theorem 6 (Arzela-Ascoli) Let ξn be a sequence of uniformly equicontinu-
ous functions X → Y , where X and Y are locally-compact Hausdorff spaces. i.e.
∀ε > 0, ∃δ > 0 ∀n ∈ N, x, y ∈ X, d(x, y) < δ =⇒ d(ξn(x), ξn(y)) < ε. Then
there is a subsequence ξnk

which converges uniformly to a continuous function
ξ∞.

Theorem 7 (Banach-Alaoglu) Let X be a Banach space and X∗ the dual
space with the weak-* topology. i.e. the topology generated by open sets of the
form {g ∈ X∗ : |g(x) − f(x)| < ε} for f ∈ X∗, x ∈ X and ε > 0. Then X∗ is
locally compact.

In particular, since L∞ is the dual of L1, the closed unit ball in L∞ is compact.
Combining the above results, we obtain the following corollary.

Corollary 8 Suppose f is a continuous function and ξε are absolutely contin-
uous functions satisfying ||ξ̇ε(t) − f(ξε(t))|| < ε for all t ∈ [0, T]. Then any
limit point of the functions ξε as ε→ 0 is a solution of the differential equation
ẋ = f(x).

3 A computable, non-effectively locally Lipschitz
function

Before presenting our main result of this section, we start with a Lemma. Its
proof can be obtained using material from [Rad62].

Lemma 9 There exists a function S : N → N and a computable function u :
N2 → N such that:

1. For any given computable function f : N→ N, there exist infinitely many
n ∈ N for which S(n) > f(n). In particular, S is non-computable.

2. for any given n ∈ N, one has limi→+∞ u(n, i) = S(n) and u(n, i) ≤ S(n)
for every i ∈ N.

We now provide a brief sketch of an example of a computable function which
is locally Lipschitz, but not effectively so. First, for λ ∈ R+

0 , where R+
0 =

[0,+∞), we define a “spike” function gλ : R → R as depicted in Fig. 1. The
function gλ is always 0, except in some interval, where it increases with slope
λ, until it reaches half-way of the interval, and then decreases with slope −λ
giving origin to a “spike”, centered on the midpoint of that interval. We now
define a sequence of computable functions {fi}i≥1 such that, on each interval

5

Figure 1: A spike function.

[n, n + 1), fi is constituted by i + 1 spikes, in intervals of the format [n, n +
1/2], [n+ 1/2, n+ 3/4], . . . , with slopes u(n, 0), . . . , u(n, i), where u is defined in
Lemma 9. It can be seen that the height of the spikes decrease proportionally
to 2−i. Moreover fi and fi+1 have the same first i spikes, the difference being
that fi+1 has an extra spike with height proportional to 2−i−1. This shows that
the sequence {fi}i≥1 converges uniformly to a computable function f with the
property that in the time interval [n, n + 1) it has infinitely many decreasing
spikes, with slopes u(n, 0), u(n, 1),

The function f is locally Lipschitz: on an interval [n, n + 1], with n ∈ N, it
satisfies

|f(x)− f(y)| ≤ Kn |x− y|
iff Kn ≥ limk→+∞ u(n, k) = S(n), where the function S is defined in Lemma 9.
In general, |f(x)− f(y)| ≤ K |x− y| for a compact B ⊆

⋃m
i=1[ai, ai + 1), with

ai ∈ N, where
K ≥ max({Kai

|ai ≥ 0}).
Let us show that f is not effectively locally Lipschitz on R. Suppose, for con-
tradiction, that there are computable sequences {an} and {rn}, an ∈ Q and
rn ∈ Q such that

R =
∞⋃
n=0

B(an, rn)

and a computable sequence {Ln} of positive integers such that

|f(x)− f(y)| ≤ Ln |x− y| whenever x, y ∈ B(an, rn).

Then we show that we will be able to present a computable function g : N→ N
which satisfies g(n) ≥ S(n) for all n ∈ N, thus deriving the desired contradiction.
How can we compute g(n) for an arbitrary n ∈ N? First notice that [n, n + 1]
is a compact set. Thus there must exist n1, . . . , nk ∈ N such that

[n, n+ 1] ⊆
k⋃
j=1

B(anj
, rnj

) (2)

If we can compute the values n1, . . . , nk ∈ N satisfying (2), then we can take

g(n) = max
1≤j≤k

Lnj
≥ S(n).

The remaining issue is to compute the values n1, . . . , nk ∈ N satisfying (2). We
can do that with the following algorithm:

6

1. Start with k = 1.

2. Check if

[n, n+ 1] ⊆
k⋃
i=0

B(ai, ri).

If yes, return 1, . . . , k, else increment k and go to Step (ii).

Notice that this algorithm always stops. Thus the result is proven. The
above algorithm could certainly be improved to discard those balls which prov-
ably do not overlap [n, n+ 1], but this is not necessary for our construction and
therefore we avoid this step in order to prevent unneeded technical complica-
tions.

We thus have proved the following result.

Theorem 10 There is a computable function f : R→ R which is locally Lips-
chitz, but not effectively so.

In particular, this also yields the following obvious corollary, which is more
related to Theorem 5 since it proves that it cannot always be used when f is
locally Lipschitz in the second variable.

Corollary 11 There is a computable function f : R×Rm → Rm which is locally
Lipschitz in the second argument, but not effectively so.

4 Computing the Solution of Ordinary Differen-
tial Equations

We now consider the computation of the solution of an ordinary differential
equation. We give two algorithms to compute the solution, the former of which
is simpler and the latter more general. Both algorithms rely on an exhaustive
enumeration of trial “runs” of the system; each run is then checked to see
if it gives a valid bound for the solution set. In this way, we can compute
bounds on the solution without a knowledge of Lipschitz constants or moduli of
continuity. Of course, the resulting algorithms are highly inefficient in practice;
the motivation for introducing them is their conceptual simplicity.

Without loss of generality, we suppose that f does not depend on the variable
t (if this is true, just encode t as a new variable τ by adding the extra component
τ̇ = 1, τ(0) = 0 to the system).

We obtain from our algorithms the following slight extension of the main
result of Ruohonen [Ruo96].

Theorem 12 Consider the initial value problem

ẋ = f(x); x(0) = x0, (3)

where f is continuous on the open set E. Suppose there is a unique solution y(·),
defined on the maximal interval (α, β), such that y(t) ∈ E for each t ∈ (α, β).
Then:

1. The operator (f, x0) 7→ (α, β) is semicomputable (i.e. α can be computed
from above and β can be computed from below), and

7

2. The operator (f, x0) 7→ y(·) is computable.

In particular, if f is a computable function and x0 a computable point, then
(α, β) is a r.e. open set and the solution y(·) is a computable function.

4.1 The Thousand Monkeys Algorithm

We now present a first algorithm, that will give the support for the algorithm
of the next subsection, which proves Theorem 12. The former algorithm proves
the case where f is locally Lipschitz, but is not sufficient to prove Theorem 12
in complete generality, since we cannot compute the solution of a non-Lipschitz
ordinary differential equation, even if the solution is unique, as we will see.

The idea underlying this algorithm is to enclose the solution at times ti by a
box Xi. Since the solution of (1) is unique, there are covers which are arbitrarily
close to the solution. In the time interval [ti, ti+1] we enclose the solution curve
by a box Bi, and the derivative vectors in a box Ci. We can enumerate all
sequences of times ti (actually, we use time differences hi = ti+1− ti) and boxes
Xi, Bi and Ci, and test if they contain the solution.

We use the notation A b B if Ā ⊂ B◦ i.e. the closure of A is a subset of the
interior of B.

Algorithm 13 Enumerate all tuples of the form(
(Xi)ki=0, (hi)k−1

i=0 , (Bi)k−1
i=0 , (Ci)k−1

i=0

)
(4)

where k ∈ N, the Xi, Bi and Ci are rational boxes and hi ∈ Q. Define t0 = 0
and ti =

∑i−1
j=0 hi for i = 1, . . . , k. We call a tuple of the form (4) a run of the

algorithm.
A run of the algorithm is said to be valid if x0 ∈ X0 and for all i = 0, . . . , k−

1:

1. f(Bi) b Ci,

2. Xi ∪Xi+1 ⊂ Bi, and

3. Xi + hiCi ⊂ Xi+1.

Note that condition (i) is effectively verifiable since the pairs (I, J) such that
f(I) ⊂ J is enumerated in a name of f , and conditions (ii,iii) can be checked
algebraically.

The algorithm works by launching computations of each of the countably
many possible runs in parallel, and testing for validity. Whenever a run is
shown to be valid, that run is written to the output.

The following result shows that any valid run of the algorithm provides
bounds on the solution.

Proposition 14 Let f be a continuous function, and ξ(·) be the unique solution
of the initial value problem ẋ = f(x); x(0) = x0. Then if (Xi, hi, Bi, Ci) is a
valid run of Algorithm 13, we have ξ(ti) ∈ Xi for all i = 0, . . . , k, and ξ(t) ∈ Bi
whenever ti ≤ t ≤ ti+1.

8

Sketch. For any valid run we have ξ(t0) = x0 ∈ X0. Suppose ξ(ti) ∈ Xi. Let
hi,max = sup{h ≤ hi | ξ(t+ h) ⊂ Bi}. Then ξ̇(t) ∈ Ci for t ∈ [ti, ti + hi,max], so
ξ(t) ∈ Xi + [0, h]Ci b Bi. Therefore hi,max = hi, so ξ(t) ∈ Bi for t ∈ [ti, ti+1]
and ξ(ti+1) ∈ Xi + hiCi ⊂ Xi+1. The result follows by induction.

Theorem 15 Let f be a locally Lipschitz function, and ξ(·) be the unique solu-
tion of the initial value problem ẋ = f(x); x(0) = x0. Let U be a neighbourhood
of x(T). Then there is a valid run of the thousand monkeys algorithm such that
tk < T < tk+1 and Bk ⊂ U .

Sketch. Let K be such that ||f(ξ(t))|| < K for all t ∈ [0, T]. Let L be a
Lipschitz constant for f on a neighbourhood W of ξ([0, T]). Fix δ < Lε/2(eLT −
1) and h < δ/KL, where ε is the precision to which we would like to compute
the solution. Suppose X is such that rad(X) < r. Then the solution over time
step h lies in a box B of radius less than r + hK of the centre x of X. Then
f(B) lies in a box C of radius less than (r + hK)L in U . Then X + hC lies in
a box Y of radius r′ less than r + (r + hK)Lh = (1 + Lh)r +KLh2.

Since h < δ/KL, we have r′ < (1 + Lh)r + δh. If we now take X0 of radius
r0, we can find Xn of radius rn < r0(1 +Lh)n + δ

(
(1 +Lh)n− 1

)
/L. By taking

r0 < ε/2eLT , we have for n ≤ T/h, that rn < δ(eLT − 1)/L < ε.
Since the Thousand Monkeys Algorithm enumerates over all rational boxes

and step sizes, we eventually find (Xi, hi, Bi, Ci) such that rad(Xi) < ri < ε for
all i, and hence rad(Bi) < ε+hiK. Therefore for ε and hi sufficiently small, we
have ξ(T) ∈ Bk ⊂ U .

However, it is not true that the Thousand Monkeys algorithm can compute
the solution of a non-Lipschitz ordinary differential equation, even if the solution
is unique.

Example 16 Consider the ordinary differential equation ẋ = f(x) in R2 de-
fined in polar coordinates by

ṙ =
√
r (cos θ − 1/2);

θ̇ = 1/
√
r.

(5)

In Cartesian coordinates, the system becomes

ẋ = (x2 + y2)1/4
(

x2

x2 + y2
− y + x/2√

x2 + y2

)
;

ẏ = (x2 + y2)1/4
(

xy

x2 + y2
+

x− y/2√
x2 + y2

− y

2
√
x2 + y2

)
.

(6)

Since (x2 + y2)1/4 → 0 as x, y → 0, and the other factors in the expression for
ẋ and ẏ are bounded, we see that the right-hand side is continuous. We claim
that

1. The initial value problem ẋ = f(x); x(0) = (0, 0) has unique solution
x(t) = (0, 0) for all t, and

2. For any run of the Thousand Monkeys Algorithm, the solution estimate
X(1) contains the point (1/4, 0).

9

For (i), suppose that the solution leaves the origin. Then it spirals round
extremely rapidly, with r increasing if |θ| < π/3 and decreasing otherwise. Since
the average decrease of r per revolution exceeds the average increase, the state
is pulled back to the origin immediately. Hence the only solution starting at the
origin is the constant solution.

For (ii), suppose that an approximation to the solution is a box X containing
the point (x, 0). Then f(X) contains the value (

√
x/2, ẏ) and also (0, 0), so the

box C contains (
√
x/2, 0). Since the initial box X(0) contains a point (x0, 0),

then the box at time t, X(t), must contains a point x(t) solving ẋ =
√
y/2,

x(0) = x0. From this we can show that the point (1, 0) lies in the solution box
X(1), regardless of the value of x0 > 0. Hence the solution computed by the
Thousand Monkeys algorithm does not converge to the true solution.

4.2 The Thousand Monkeys Algorithm with Subdivision

The following algorithm is called the Thousand Monkeys Algorithm with sub-
division (TMS), and proves Theorem 12, because it computes the solution of
(3) and gives a succession of time values which converge to β from below and,
similarly, we could show that α is computable from above.

The idea of this algorithm is similar to Algorithm 13, but instead of enclosing
the solution at time ti by a single box, we instead use a finite union of boxes,⋃li
j=1Xi,j . During the ith time step, we enclose the solution starting in Xi,j by

a box Bi,j , and find a box Yi,j containing this solution. At time ti+1, we use a
different subdivision

⋃li+1
j=1 Xi+1,j equal to

⋃li
j=1 Yi,j .

Algorithm 17 Enumerate all tuples of the form (Xi,j , hi, Bi,j , Ci,j , Yi,j) for
i = 0, . . . , k − 1, j = 1, . . . , li where k, li ∈ N, Xi,j, Bi,j, Ci,j are rational boxes
and hi ∈ Q. Such a tuple is a run of the algorithm. Define ti =

∑i−1
j=0 hi for

i = 0, . . . , k.
A run of the algorithm is said to be valid if x0 ∈

⋃l0
j=1X0,j and for all

i = 0, . . . , k − 1 and j = 1, . . . , li, we have

1. f(Bi,j) b Ci,j;

2. Xi,j ∪ Yi,j ⊂ Bi,j;

3. Xi,j + hCi,j ⊂ Yi,j;

4.
⋃li
j=1 Yi,j =

⋃li+1
j=1 Xi+1,j.

Just as in Algorithm 13, we enumerate all runs and verify whether a run is
valid. The output is the infinite sequence of all valid runs.

Theorem 18 Suppose the initial value problem ẋ = f(x); x(0) = x0 has a
unique solution ξ(·) on [0, T]. Then for all open U containing ξ(T), there exists
a run of Algorithm 17 such that tk < T < tk+1 and

⋃lk
j=1Bk,j ⊂ U .

Sketch. Let W be a bounded neighbourhood of ξ([0, T]), let K be such that
||f(x)|| < K for all x ∈ W and let δ(·) be a modulus of continuity for f in W .
Define Xi =

⋃li
j=1Xi,j for i = 0, . . . , k, similarly for sets Bi, Ci and Yi.

10

Fix ε > 0 and a time step h < δ(ε)/K. If all the sets Xi,j each have radius
less than δ(ε)−hK, then the sets Bi,j can be chosen with radius less than δ(ε),
and Ci,j with radius less then ε.

Consider a run of the algorithm such that the sets Ci,j each have radius
less than ε, and that Xi,j + hCi,j = Yi,j . Define functions η by η(t0) ∈ X0,
and for ti < t ≤ ti+1 by η(t) = ξε(ti+1) = η(ti) + (t − ti)ci for some ji such
that η(ti) ∈ Xi,ji and ci ∈ Ci,j Then η is a piecewise-affine function, and
||η̇(t) − f(η(t))|| < 2ε for almost every t. Further, given any yi ∈ Xi, we can
construct such a function η with η(ti) = yi.

Taking any sequence of functions ξn corresponding to a sequence εn with
ε → 0, by Corollary 8, we see that ξn converges uniformly to a solution of the
differential equation ẋ = f(x). Since the solution of the equation is unique,
there are runs of the algorithm such that ti < T < ti+1 and hi, rad(Xi) and
rad(Yi) are arbitrarily small. We then easily see that rad(Bi) can be taken
arbitrarily small, and hence Bi ⊂ U as required.

5 Conclusion

We have shown that we can compute the solution of the initial-value problem for
ordinary differential equations with continuous right-hand side, if the solution is
assumed unique. We presented algorithms for the computation of the solution
using the “thousand monkeys” approach. In this way, we have shown that
the solution of a differential equation defined by a locally Lipschitz function is
computable even if the function is not effectively locally Lipschitz, a situation
which can happen, as we have seen.

Interesting directions for further work are to extend the results of [PBV95],
which proves the computability of solution set for Lipschitz differential inclu-
sions, without requiring the Lipschitz constant, or with weaker conditions on
the right-hand side.

Acknowledgments. The authors wish to thank Ning Zhong for useful re-
marks and comments. DG was partially supported by Fundação para a Ciência
e a Tecnologia and EU FEDER POCTI/POCI via CLC, SQIG - Instituto de
Telecomunicações and grant SFRH/BP D/39779/2007. Additional support to
DG was also provided by the Fundação Calouste Gulbenkian through the Pro-
grama Gulbenkian de Est́ımulo à Investigação. PC was partially supported by
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) Vidi grant
639.032.408.

References

[Abe70] O. Aberth. Computable analysis and differential equations. In
A. Kino, J. Myhill, and R.E. Vesley, editors, Intuitionism and Proof
Theory, Studies in Logic and the Foundations of Mathematics, pages
47–52. North-Holland, 1970.

[Abe71] O. Aberth. The failure in computable analysis of a classical existence
theorem for differential equations. Proc. Amer. Math. Soc., 30:151–
156, 1971.

11

[Abe80] O. Aberth. Computable Analysis. McGraw-Hill, 1980.

[CL55] E. A. Coddington and N. Levinson. Theory of Ordinary Differential
Equations. McGraw-Hill, 1955.

[Gab07] G. Gabor. Continuous selection of the solution map for one-sided lip-
schitz differential inclusions. Nonlinear Anal., 66(5):1185–1197, 2007.

[GZB09] D.S. Graça, N. Zhong, and J. Buescu. Computability, noncomputabil-
ity and undecidability of maximal intervals of IVPs. Trans. Amer.
Math. Soc., 361(6):2913–2927, 2009.

[Har82] P. Hartman. Ordinary Differential Equations. Birkhäuser, 2nd edition,
1982.

[Ko91] K.-I Ko. Computational Complexity of Real Functions. Birkhäuser,
1991.

[Lef65] S. Lefshetz. Differential Equations: Geometric Theory. Interscience,
2nd edition, 1965.

[Moo66] R. E. Moore. Interval Analysis. Prentice-Hall, 1966.

[PBV95] A. Puri, V. Borkar, and P. Varaiya. Epsilon-approximation of differ-
ential inclusions. In Proc. of the 34th IEEE Conference on Decision
and Control, pages 2892–2897, 1995.

[PER79] M. B. Pour-El and J. I. Richards. A computable ordinary differential
equation which possesses no computable solution. Ann. Math. Logic,
17:61–90, 1979.

[PER89] M. B. Pour-El and J. I. Richards. Computability in Analysis and
Physics. Springer, 1989.

[Rad62] T. Radó. On non-computable functions. J. Bell Systems Tech., 41:877–
884, 1962.

[Ruo96] K. Ruohonen. An effective Cauchy-Peano existence theorem for unique
solutions. Internat. J. Found. Comput. Sci., 7(2):151–160, 1996.

[Wei00] K. Weihrauch. Computable Analysis: an Introduction. Springer, 2000.

12

