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Abstract

In this paper we study from a computational perspective some prop-
erties of the solutions of polynomial ordinary differential equations.

We consider elementary (in the sense of Analysis) discrete-time dynam-
ical systems satisfying certain criteria of robustness. We show that those
systems can be simulated with elementary and robust continuous-time
dynamical systems which can be expanded into fully polynomial ordinary
differential equations with coefficients in Q[π]. This sets a computational
lower bound on polynomial ODEs since the former class is large enough
to include the dynamics of arbitrary Turing machines.

We also apply the previous methods to show that the problem of de-
termining whether the maximal interval of definition of an initial-value
problem defined with polynomial ODEs is bounded or not is in general
undecidable, even if the parameters of the system are computable and
comparable and if the degree of the corresponding polynomial is at most
56.

Combined with earlier results on the computability of solutions of poly-
nomial ODEs, one can conclude that there is from a computational point
of view a close connection between these systems and Turing machines.

1 Introduction

Differential equations are a powerful tool to model a diversity of phenomena
in fields ranging from basic natural sciences like physics, chemistry or biology
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to social sciences or economics. Among these, initial value problems (IVPs)
of the form x′ = f(t, x), with x(t0) = x0, where f is a vector field and t is
the independent variable, play a predominant role. In this paper we consider
the large class of polynomial IVPs (PIVPs for short) in which f is a vector of
polynomials. Many well known models, like the Lorenz equations in meteorol-
ogy, the Lotka-Volterra equations for predator-prey systems, or Van der Pol’s
equation in electronics [HS74] fall into this category. In Section 2 we show that
in fact all the elementary functions of Analysis are solutions of PIVPs. This
is a stronger version of the well established fact that all elementary functions
are differentially algebraic [Rit48]. It is also worth noticing that the solutions
of PIVPs are precisely the set of functions definable with Shannon’s General
Purpose Analog Computer (GPAC) [Sha41] as proved in [GC03].

While the qualitative behavior of linear systems (i. e. where f is linear)
and planar systems (where f : R3 → R2) is completely understood [HW95],
it is not known for all but a few cases how to predict the behavior of the
solutions of general PIVPs from the expression of f , which is the reason why
many fundamental questions about PIVPs (e.g. Hilbert’s 16th problem) are
still open.

Since most nonlinear differential equations cannot be solved exactly, one has
to resort to numerical methods to obtain approximate solutions. This leads to a
range of questions about computational properties of PIVPs. In particular, one
can ask if PIVPs have computable approximations, if the domain of the solution
is computable, or even if deciding whether the maximal interval of existence is
bounded is computable. Such questions have been answered for analytic IVPs
(where f is analytic) in [GZB06]. In Section 2 we point out that the results in
[GZB06] imply that the domain of existence of PIVP functions (i.e. solutions of
PIVPs) is in general recursively enumerable and that the solution is computable
on its domain. This last result sets an upper bound on the computability of
PIVP functions since it ensures that as long as f is polynomial and computable
they can be arbitrarily approximated wherever they are defined.

To obtain computational lower bounds for PIVPs, one can show that any
computable function can be approximated by some PIVP function. In [GCB08]
it was proved that under a simple (and unbounded) encoding in N3, the evolution
of Turing machines can be simulated with PIVPs. In this paper, we extend that
result and show that any computable discrete dynamical system on Nm which
admits a robust extension (to be defined) can be simulated with a PIVP.

The iteration of maps with IVPs is not new and can be found, for instance, in
[Bra95], [CMC00]. However, those constructions are in some sense not satisfac-
tory since they involve functions with some degree of discreteness (e.g. functions
which are not analytic or even have discontinuous derivatives) which can be used
to build “exact clocks” that simulate the discrete steps of the iteration.

In Sections 3 and 4 we state and prove the main result of the paper. We
show that given a map ω on Nm, one can construct a PIVP with coefficients in
Q[π] that simulates the iteration of ω as long as ω is extendable to a “robust”
map Ω on Rm, in a sense to be defined in Section 3, and Ω is composition of
polynomial and PIVP functions with parameters in Q[π] . The simulation is ro-

2



bust, which is a necessity for our construction, but is also a natural requirement
for a continuous-time physical system described by an IVP. The constructions
in Section 4 will also provide the necessary tools to address the issues discussed
in the remainder of the paper.

Finally, in Section 5, we review and extend some undecidability results on
PIVPs. Our results in [GCB08] imply that reachability for PIVPs is undecid-
able, i.e., given a PIVP and some open set in phase space, there is no algo-
rithm to decide if the solution of the PIVP crosses the open set. This contrasts
with the decidability of the reachability for linear differential equations [Hai08].
In [GBC07] we showed that the boundedness of the domain of existence for
PVIPs is undecidable as long as f is polynomial of sufficiently high degree and
computable. At first sight, this result might seem trivial, since one can easily
construct simple PIVPs which, upon varying one parameter, exhibit a critical
value where the solution is bounded on the left of this parameter value and
unbounded on the right. For instance, the PIVP x′ = α(x2 − 1)t, x(0) = 3 has
a maximal interval which is bounded for α > 0 and unbounded if α ≤ 0. Since
we cannot compare exactly two arbitrary computable reals [Ko91] the bounded-
ness problem for the PIVP above is undecidable. However, in Section 5 we show
that if we consider that all input parameters are “comparable”, the boundedness
problem remains undecidable. We also prove the claim in [GBC07] that those
undecidability results hold for PIVPs where the degree of the polynomial is less
or equal to 56.

2 The GPAC, Polynomial Differential Equations,
and Computable Analysis

In this section we introduce some useful definitions and results that will later
be used in this paper.

Definition 1 Let I ⊆ R be a non-empty open interval and let t0 ∈ I. We say
that g : I → R is a PIVP function on I if it is a component of the solution of
the initial-value problem

x′ = p(t, x), x(t0) = x0 (1)

where p is a vector of polynomials and t0 ∈ I. We say that g is a PIVP function
with parameters in S ⊆ R if the coefficients of p in (1), t0, and the components
of x0 belong to S.

Similarly we say that a function g : I ⊆ R → Rk is a vector PIVP function
if each component of g is a PIVP function.

Example 2 The following are examples of PIVP functions with parameters in
Z: the exponential function ex, the trigonometric functions cos, sin [GCB08],
the inverse function x 7→ 1/x (solution of y′ = −y2; on (0,+∞) it can be
obtained by setting the initial condition y(1) = 1).
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The PIVP functions are also closed under the following operations (as far
as we know, these properties have only been reported in the literature for the
broader case of differentially algebraic functions):

1. Field operations +,−,×, /. For instance, if f, g : I → R, where I ⊆ R is
an open interval, are PIVP functions, then so is f + g in I. In fact, if f, g
are the first components of the solutions of the (vector) PIVPs{

x′ = p(t, x)
x(t0) = x0

and
{
y′ = q(t, y)
y(t0) = y0

respectively then, since f ′(t)+g′(t) = p1(t, x)+q1(t, x), where p1(t, x) and
q1(t, x) are the first components of p(t, x) and q(t, x) respectively, f + g is
the last component of the solution of the PIVP x′ = p(t, x)

y′ = q(t, y)
z′ = p1(t, x) + q1(t, y)

 x(t0) = x0

y(t0) = y0

z(t0) = x0,1 + y0,1

where x0,1 and y0,1 are the first components of vectors x0 and y0, respec-
tively. Similar proofs apply for the operations −,×, /. It should be noted
that the quotient f/g is a PIVP function in intervals which do not contain
zeros of g, and that the PIVP which generates f/g is well-defined in such
intervals. For instance tan(= sin

cos ) is a PIVP function on (−π/2, π/2).

2. Composition. If f : I → R, g : J → R, where I, J ⊆ R are open intervals
and f(I) ⊆ J , are PIVP functions, then so is g ◦ f on I. To see this,
suppose that f, g are the first components of the solutions of the PIVPs{

x′ = p(t, x)
x(t0) = x0

and
{
y′ = q(t, y)
y(t1) = y0

(2)

respectively, where t0 ∈ I and t1 ∈ J (no connection is assumed between
these values). Then, since (g◦f)′(t) = g′(f(t)).f ′(t), we construct a system
that computes f ′(t) (just copy the left system of (2) and note that f ′(t) =
p1(t, x)), and another that computes g′(f(t)) (now pick the right system
of (2); the first component will give g′(t), so we have to substitute the
variable t by f(t) = x1 so that this component yields g′(f(t))), obtaining
the following PIVP, where g ◦ f is the component z1:

x′ = p(t, x)
z′1 = q1(x1, z)p1(t, x)

...
z′n = qn(x1, z)p1(t, x)

{
x(t0) = x0

z(t0) = f(x0).

3. Differentiation. If f : I → R, where I ⊆ R is an open interval, is a PIVP
function, then so is f ′ : I → R. To see this, suppose that f is the first
component of the solution of the PIVP{

x′ = p(t, x)
x(t0) = x0.
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Then

f ′(t) = x′′1(t) =
d

dt
p1(t, x) =

∂p1

∂t
+

n∑
i=1

∂p1

∂xi
x′i =

∂p1

∂t
+

n∑
i=1

∂p1

∂xi
pi(t, x)

which implies that f ′ is the last component of the solution of the PIVP{
x′ = p(t, x)
z′ = ∂p1

∂t +
∑n
i=1

∂p1
∂xi

pi(t, x)

{
x(t0) = x0

z(t0) = f ′(t0).

4. Compositional inverses. If f : I → R, where I ⊆ R is an open interval,
is a bijective PIVP function, then so is f−1. This case will be shown in
the end of this section. In particular, this result implies that log, arcsin,
arccos, and arctan are also PIVP functions.

From the preceding examples, we conclude that the following corollary, where
closed-form stands for the class of elementary functions in Analysis which, in-
formally, correspond to the functions obtained from the rational functions, sin,
cos, exp through finitely many compositions and inversions.

Corollary 3 All closed-form functions are PIVP functions.

When proving that some function is PIVP, we will find it most convenient to
make use of ODEs not only defined with polynomials, but also with other PIVP
functions. For this purpose, we have to resort to the next theorem, which can
be viewed as a strengthening of the elimination theorem of Rubel and Singer
for differentially algebraic functions [RS85] to the case of PIVPs. Its proof is
given in [GCB08] for S = R but applies to any subfield of R (a different proof
is given implicitly in [Gra04]).

Theorem 4 Let S be a subfield of R. Consider the IVP

x′ = f(t, x), x(t0) = x0 (3)

where f : D ⊆ Rn+1 → Rn, D is the domain of f , and each component of f
is a composition of polynomials with coefficients in S and PIVP functions with
parameters in S and (t0, x0) ∈ D∩Sn+1. Then there exists m ≥ n, a polynomial
p : Rm+1 → Rm with coefficients in S and y0 ∈ Sm such that the solution of (3)
is given by the first n components of y = (y1, ..., ym), where y is the solution of
the PIVP

y′ = p(t, y), y(t0) = y0.

Let us now prove that the inverse function f−1 of a bijective PIVP function
f : I → R, where I ⊆ R is an open interval, is also a PIVP function. We know
that (f−1)′(x) = 1/f ′(f−1(x)). Then, between two consecutive (inverse images
of) zeros a, b of f ′, with a < b, f−1 will be the solution of the IVP

y′ =
1

f ′(y)
, y(f(d)) = d, (4)
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where d ∈ I and f(d) ∈ (a, b). Since f is a PIVP function, so is f ′. Moreover
x 7→ 1/x is also a PIVP function, and since PIVP functions are closed under
composition, so is x 7→ 1/f ′(x). Then Equation (4) and Theorem 4 ensure that
f−1 : (a, b)→ R is a PIVP function.

The following result, extracted from [GC03], [Gra04] shows that the General
Purpose Analog Computer (GPAC), a model introduced by Shannon in 1941
[Sha41], and later refined in [PE74, pp. 13-14], [GC03, p. 647], [Gra04], is
equivalent to PIVP functions. This result applies formally to the refined version
of the GPAC presented in [GC03, p. 647], [Gra04].

Proposition 5 A function is generated by a GPAC iff it is a PIVP function.

Therefore, all results stated in this paper for PIVP functions are also valid
for the GPAC generable functions.

We now recall basic notions from computable analysis. See [Wei00] for an
up-to-date monograph on computable analysis from the computability point of
view, [Ko91] for a presentation from a complexity point of view, or [PER89] for
a general introduction to the subject.

Definition 6 A sequence {rn} of rational numbers is called a ρ-name of a real
number x if there exist three functions a, b, c from N to N, such that for all
n ∈ N, rn = b(n)

c(n)+1 (−1)a(n) and

|rn − x| ≤
1
2n
. (5)

In the conditions of the above definition, we say that the ρ-name {rn} is given
as an oracle to an oracle Turing machine, if the oracle to be used is (a, b, c). The
notion of the ρ-name can be extended to Rl: a sequence {(r1n, r2n, . . . , rln)}n∈N
of rational vectors is called a ρ-name of x = (x1, x2, . . . , xl) ∈ Rl if {rjn}n∈N is
a ρ-name of xj , 1 ≤ j ≤ l.

Definition 7 A real number x is called computable if a, b, and c in (5) are
computable (recursive) functions.

Definition 8 A function f : D ⊆ Rm → Rk is computable if there is an oracle
Turing machine such that for any input n ∈ N (accuracy) and any ρ-name of
x ∈ E given as an oracle, the machine will output a rational vector r satisfying
‖r − f(x)‖∞ ≤ 2−n, where ‖(y1, . . . , yl)‖∞ = max1≤i≤l |yi| for all (y1, . . . , yl) ∈
Rl.

In particular, every rational number must be computable and it is not dif-
ficult to show that polynomials having computable coefficients are computable
functions. The following is a corollary of Theorem 3.1 of [GZB07].

Theorem 9 Let f : R → Rm be a vector PIVP function with computable pa-
rameters defined on an interval (α, β). Then f is computable in (α, β).
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3 Robust Simulations of Discrete Dynamical Sys-
tems

One of the purposes of the present paper is to show that a large class of discrete
systems can be simulated with vector PIVP functions. Let D be a discrete
dynamical system (both space and time are discrete). We can associate each
discrete part of the state space to an integer, so that the evolution of the system
is modelled by the iteration of a map ω : Nm → Nm. In general, if f is a
function, we denote its kth iterate by f [k], i.e. f [0](x) = x and f [k+1] = f ◦ f [k]

for all k ∈ N. We now present some definitions.

Definition 10 The map Ω : Rm → Rm is a (real) robust extension of the map
ω : Nm → Nm if there exist δin, δev, δout ∈ (0, 1/2) such that for all x0 ∈ Rm,
n0 ∈ Nm, Ω : Rm → Rmone has

1. Ω(n) = ω(n) and

2. ‖n0 − x0‖∞ ≤ δin and
∥∥Ω− Ω

∥∥
∞ ≤ δev implies

∥∥ω(n0)− Ω(x0)
∥∥
∞ ≤

δout.

The following lemma follows easily from this definition by induction (we
can “contract” δout to δin using the function σ presented in Lemma 19). For
simplicity, we will usually refer to robust extensions of a map as the property
described by this lemma instead of Definition 10.

Lemma 11 If Ω : Rm → Rm is a robust extension of the map ω : Nm → Nm,
then there exist δin, δev, δout ∈ (0, 1/2) such that for all x0 ∈ Rm, n0 ∈ Nm,
Ω : Rm → Rmone has

1. Ω(n) = ω(n) and

2. ‖n0 − x0‖∞ ≤ δin and
∥∥Ω− Ω

∥∥
∞ ≤ δev implies

∥∥∥ω[k](n0)− Ω
[k]

(x0)
∥∥∥
∞
≤

δout for all k ∈ N.

In the continuous-time setting dynamical systems are described by ODEs
instead of iteration of maps. Moreover, since time is continuous, we also allow
robustness in the time instant where we read the output. Again, we could
consider robustness for one time unit steps, and then generalize to give iterates
for all k ∈ N as we did for robust extension. Here, for simplicity, we omit this
two step procedure and present instead the following definition.

Definition 12 Let φ : R→ R be the unique solution of the initial value problem

x′ = f(t, x), x(0) = n0.

We say that φ is a robust suspension of the map ω : Nm → Nm if there exist
δin, δev, δout, δtime ∈ (0, 1/2), such that for all x0 ∈ Rm, n0 ∈ Nm, k ∈ N, and
f : Rm+1 → Rm one has that

‖n0 − x0‖∞ ≤ δin and
∥∥f − f∥∥∞ ≤ δev
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implies that the solution φ of the initial-value problem

x′ = f(t, x), x(0) = x0

satisfies ∥∥∥ω[k](n0)− φ(t)
∥∥∥
∞
≤ δout

for all t ∈ R+
0 such that |t− k| ≤ δtime.

These two definitions say that whenever we have a robust extension/suspension
of a map, we can perturb the system by some amount, and still obtain a result
close to the desired iterate ω[k](n0).

We shall use Q[π], the standard algebraic ring extension of Q by adjoining
the transcendent π, and which is the smallest ring containing Q ∪ {π}:

Q[π] := {anπn + . . .+ a1π + a0 ∈ R|a0, . . . , an ∈ Q}.

The following are the main results of this section, to be proved in Section 4.
The next theorem shows that if the map is a composition of polynomials and
PIVP functions (with parameters in Q[π]), then one can constructively obtain
a robust suspension of the map which is itself a PIVP function (with parameter
in Q[π]).

Theorem 13 If the map ω : Nm → Nm admits a robust extension Ω : Rm →
Rm whose components are compositions of polynomials and PIVP functions with
parameters in Q[π], then ω admits a robust suspension φ which is a vector PIVP
function with parameters in Q[π].

The next proposition follows from the proof of Theorem 12 from [GCB08].
There the transition of a Turing machine is coded as a map over the integers in
the following manner: we code the state as an integer and, using a representation
of numbers in some adequate base, we code the right part of the tape as a second
integer, and the left part as a third integer. We denote that encoding by η (see
[GCB08, p. 332] for more details).

Proposition 14 Under the encoding η, the transition function ω : N3 → N3 of
a Turing machine admits a robust extension Ω : R3 → R3 . Moreover Ω can be
chosen to be a composition of polynomials with coefficients in Q[π] and PIVP
functions with parameters in Q[π] (in particular sin, cos and arctan).

Actually in [GCB08] we required algebraic numbers as coefficients for the
polynomials. But non-rational coefficients are only needed to perform a trigono-
metric interpolation, and may be well approximated by rationals for the purpose
at hand. This approximation will introduce some extra error to the computa-
tion of the map, but this is a minor hinderance since the map is robust. From
Theorem 13 and Proposition 14, we obtain the following result.

Corollary 15 With the above encoding, the transition function ω of a given
Turing machine admits a robust suspension φ. Moreover φ is a vector PIVP
function with parameters in Q[π].
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4 Proof of Theorem 13

This proof is based on Branicky’s construction [Bra95], and many steps are sim-
ilar to those presented in [GCB08]. So, before presenting the proof of Theorem
13, we will briefly sketch this technique, that constructively shows how a map
from integers to integers can be iterated with smooth ODEs. By a smooth ODE
we mean an ODE

y′ = f(t, y) (6)

where f is of class Ck, for some 1 ≤ k ≤ ∞ (but not necessarily analytic).
Instead of using the original approach of Branicky, we will use the one by Cam-
pagnolo, Costa, and Moore in [CMC00], [CM01], [Cam02b].

Suppose that ω : Zm → Zm is a map. For better readability, we break down
the procedure into two constructions.

Construction 16 Consider a point b ∈ R (the target), some γ > 0 (the tar-
geting error), and time instants t0 ( departure time) and t1 ( arrival time), with
t1 > t0. Then obtain an IVP (the targeting equation) defined with an ODE (6),
where f : R2 → R, such that the solution y satisfies

|y(t1)− b| < γ (7)

independent of the initial condition y(t0) ∈ R.

As pointed out in [GCB08, p. 345] this can be done by an ODE

y′ = c(b− y)3φ(t), (8)

where φ : R → R+
0 is some function satisfying

∫ t1
t0
φ(t)dt > 0 and c > 0 is any

constant which is bigger than a constant c0 depending on γ and φ. Note that
the only requirement for the construction to hold is that c is large enough. We
refer the reader to [GCB08, p. 345] for details.

Construction 17 Iterate the map ω : Zm → Zm with a smooth ODE (6).

Let Ω : Rm → Rm be an arbitrary smooth extension of ω to R (not necessar-
ily robust). The iteration of ω may be performed [Cam02a, Proposition 3.4.2]
by the initial-value problem{

z′1 = c1(Ω(r(z2))− z1)3θj(sin 2πt)
z′2 = c2(r(z1)− z2)3θj(− sin 2πt)

{
z1(0) = x0

z2(0) = x0,
(9)

where z1(t), z2(t) ∈ Rm, θj(x) = 0 if x ≤ 0 and θj(x) = xj if x > 0, and r(x)
is a function that is a solution of an ODE and that satisfies r(x) = i whenever
x ∈ [i−1/4, i+ 1/4] for all i ∈ Z (see the proof of Proposition 3.4.2 in [Cam02a]
for the explicit definition of r(x)). Note that c1 and c2 depend on j and that
all coefficients in (9) are in Q[π] [Cam02a]. In the remainder of this section we
will show how to replace the non-analytic terms in (9) by PIVP functions with
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parameters in Q[π]. As a result, by Theorem 4, it follows that the iteration can
be performed with vector PIVP functions with parameters in Q[π].

However, if our purpose is to prove Theorem 13, we have some problems
with the previous constructions:

1. We have used the nonanalytic functions θj(x) and r(x) which are obviously
not PIVP functions. We will remove these functions using the fact that
ω admits a robust extension. Therefore we have to study what happens
when perturbations are allowed in (9) to prove Theorem 13.

2. We would like to “read” the value of the iterated function not in time
intervals of the form [k, k + 1/2] for k ∈ N as before, but rather in time
intervals of the form [k − 1/4, k + 1/4] so that we can use δtime = 1/4 for
Theorem 13. This may be easily achieved by using a translation that adds
1/4 units of time. Because this construction is simple, in what follows, we
will continue to stick to time intervals of the form [k, k + 1/2] in order to
not overcomplicate our constructions.

In order to solve the previous problems, we need to recall the following two
functions, σ and l2, which were introduced and studied in [GCB08].

Lemma 18 Let l2 : R2 → R be given by l2(x, y) = 1
π arctan(4y(x − 1/2)) + 1

2 .
Suppose also that a ∈ {0, 1}. Then, for any a, y ∈ R satisfying |a− a| ≤ 1/4
and y > 0,

|a− l2(a, y)| < 1
y
.

Lemma 19 Let σ(x) = x − 0.2 sin(2πx) and ε ∈ [0, 1/2). Then there is some
contracting factor λε ∈ (0, 1) such that for all n ∈ Z, ∀δ ∈ [−ε, ε], |σ(n+δ)−n| <
λεδ.

Studying the perturbed targeting equation. (cf. Construction 16) Be-
cause the iterating procedure relies on the basic ODE (8), we have to study the
following perturbed version of (8)

z′ = c(b(t)− z)3φ(t) + E(t), (10)

where
∣∣b(t)− b∣∣ ≤ ρ and |E(t)| ≤ δ. This was done in [GCB08], where it is

shown that
|z(1/2)− b| < ρ+ γ +

δ

2
. (11)

Removing the θj’s from (9). We must remove the θj ’s in two places: in the
function r and in the terms θj(± sin 2πt). Since in (9) we are using a robust
extension Ω : Rm → Rm of ω : Nm → Nm, we no longer need the corrections
performed by r. There may be a problem when Ω is a robust extension of ω
with δout > 1/4, but this can easily be overcome by applying the function σ l
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times to each component of Ω until one has that σ[l] ◦Ω is a robust extension of
ω with δσin ≤ 1/4, and use σ[l] ◦ Ω instead of Ω. So, without loss of generality,
we assume that δout ≤ 1/4 for Ω.

On the other hand we cannot use this technique to treat the terms θj(± sin 2πt).
We need to substitute φ(t) = θj(sin 2πt) with an analytic (PIVP) function
ζ : R→ R with the following ideal behavior:

(i) ζ is periodic with period 1;
(ii) ζ(t) = 0 for t ∈ [1/2, 1];
(iii) ζ(t) ≥ 0 for t ∈ [0, 1/2] and

∫ 1/2

0
ζ(t)dt > 0.

Of course, conditions (ii) and (iii) are incompatible for analytic functions.
Instead, we approximate ζ using a function ζε, where ε > 0. This function must
satisfy the following conditions:

(ii)′ |ζε(t)| ≤ ε for t ∈ [1/2, 1];
(iii)′ ζε(t) ≥ 0 for t ∈ [0, 1/2] and

∫ 1/2

0
ζε(t)dt > I > 0, where I is indepen-

dent of ε.
In [GCB08] an example of a PIVP function satisfying both (ii)′ and (iii)′ is

constructed (function W0(t, y) in p. 346 of that paper). Similarly, θj(− sin 2πt)
will be replaced by the PIVP function ζε(−t). This function is defined by means
of a PIVP where all coefficients are in Q[π].

Performing Construction 17 with vector PIVP functions. We are now
ready to perform a simulation of an integer map with a system similar to (9),
but using only PIVP (and hence analytic) functions. Choose δin, δev, and a
targeting error γ > 0 such that

2γ + δev/2 ≤ δin < 1/4. (12)

We take δtime = 1/4. We want to determine δout and present a system of ODEs
that satisfies the conditions of Theorem 13. Consider the system of ODEs{

z′1 = c1(Ω ◦ σ[m](z2)− z1)3 ζε1(t),
z′2 = c2(σ[n](z1)− z2)3 ζε2(−t) (13)

with initial conditions z1(0) = z2(0) = x0, where c1, c2,m, n,ε1, and ε2 are still
to be defined, and σ is the error-contracting function defined in Lemma 19.

We would like (13) to satisfy the following property: on [0, 1/2],

|z′2(t)| ≤ γ. (14)

This can be achieved by taking ε2 = γ/K, where K is a bound for c2(σ[n](z1)−
z2)3 in the interval [0, 1]. Since |x|3 ≤ x4 + 1 for all x ∈ R, we can take
ε2 = γ

c2(σ[n](z1)−z2)4
+ γ

c2
. Now notice that z2(0) has an error bounded by

δin. This fact, together with (14) and the fact that z′2 might be subject to
perturbations of amplitude not exceeding δev imply that

|z2(t)− x0| ≤ δin + (δev + γ)/2 = δout < 1/2 for t ∈ [0, 1/2]. (15)
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Therefore, for m satisfying σ[m](δout) < γ, we have
∣∣σ[m](z2(t))− x0

∣∣ < γ for
all t ∈ [0, 1/2]. Hence, from the study of the perturbed targeting equation (10),
where φ(t) = ζε1(t) and c1 is obtained accordingly, we have (take ρ = γ and
consider (12))

|z1(1/2)− ω(x0)| < 2γ +
δev
2
≤ δin. (16)

For the interval [1/2, 1] the roles of z1 and z2 are interchanged. Similarly to the
reasoning done for z2 on [0, 1/2], take ε1 = γ

c1(Ω◦σ[m](z2)−z1)4
+ γ

c1
so that on

[0, 1/2]
|z′1(t)| ≤ γ.

From this inequality, (16), and the fact that z′2 might be subject to perturbations
of amplitude not exceeding δev, we conclude that

|z1(t)− ω(x0)| ≤ δin + (δev + γ)/2 = δout < 1/2 for t ∈ [1/2, 1].

Therefore, for n = m, we have
∣∣σ[n](z1(t))− ω(x0)

∣∣ < γ for all t ∈ [1/2, 1].
Hence, from the study of the perturbed targeting equation (10), where φ(t) =
ζε2(t) and c2 is obtained accordingly, we have

|z2(1)− ω(x0)| < 2γ +
δev
2
≤ δin.

Now we can repeat the procedure for intervals [1, 2], [2, 3], etc. to conclude that
for all j ∈ N and for all t ∈ [j, j + 1/2],∣∣∣z1(t)− ω[j](x0)

∣∣∣ ≤ δout.
Moreover, z1 is defined as the solution of an ODE written in terms of PIVP
functions, and all coefficients of this ODE are in Q[π]. Then, by Theorem 4, z1

is a vector PIVP function with parameters in Q[π].

5 Application – Undecidability for PIVPs with
Comparable Parameters

It is well known from the basic existence-uniqueness theory of ODEs [CL55],
[Lef65] that if f is analytic, then the IVP

x′ = f(t, x), x(t0) = x0 (17)

has a unique solution x(t) defined on a maximal interval of existence I =
(α, β) ⊂ R that is analytic on I [Arn78]. The interval is maximal in the sense
that either α = −∞ or x(t) is unbounded as t → α+ with similar conditions
applying to β (see Proposition 20 for details). Actually, f only needs to be con-
tinuous and locally Lipschitz in the second argument for this maximal interval
to exist.
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A question of interest is the following: is it possible to design an automated
method that, on input (f, t0, x0), gives as output the maximal interval of exis-
tence for the solution of (17)? In computability theory, e.g. [Sip97], [HMU01], it
is well known that some problems cannot be answered by the use of an algorithm
(more precisely, by the use of a Turing machine). Such problems are labelled
undecidable and many examples are known. The most prominent undecidable
problem is the Halting Problem: given a universal Turing machine and some
input to it, decide whether the machine eventually halts or not. To address this
kind of questions for IVPs, we use the computable analysis approach [PER89],
[Ko91], [Wei00], which we presented in the end of Section 2. Using that ap-
proach, it was shown in [GZB07] that given an analytic IVP (17), defined with
computable data, its corresponding maximal interval may be non-computable.

Non-computability results related to initial-value problems of differential
equations are not new. For example, Pour-El and Richards [PER79] showed
that if we relax the condition of analyticity in the IVP (17) defined with com-
putable data, it can have non-computable solutions. In [PER81], [PEZ97] it is
shown that there is a three-dimensional wave equation, defined with computable
data, such that the unique solution is nowhere computable. However, in these
examples, non-computability is not “genuine” in the sense that the problems
under study are ill-posed: either the solution is not unique or it is unstable
[WZ02]. In other words, ill-posedness was at the origin of non-computability
in those examples. In contrast, an analytic IVP (17) is classically well-posed
and, consequently, the non-computability results do not seem to reflect compu-
tational and well-posedness deficiencies inherited by the problems.

Motivated by the non-computability result obtained in [GZB07], this latter
paper also addresses the following problem: while it is not possible to compute
the maximal interval of (17) is it possible to compute some partial information
about it? In particular, is it possible to decide if this maximal interval is bounded
or not?

This question has interest on its own for the following reason. In many
problems, we implicitly assume that t is defined for “all time”. For example,
if one wants to compute sinks or limit cycles associated with ODEs, this only
makes sense if the solution of the ODE is defined for all times t > t0. This is also
implicitly assumed in problems like reachability [AD90], [AMP95], [HKPV98],
[Bou99], [BT00], etc. For this reason, those problems only make sense when
associated with ODEs for which the maximal interval is unbounded. So, it
would be interesting to know which are the “maximal” classes of functions f for
which the boundedness problem is decidable.

In [GZB07], it was shown that for the general class of analytic IVPs, the
boundedness problem of the maximal interval is undecidable. Here we will
deepen this result: we will show that the boundedness problem is still undecid-
able for PIVPs of degree greater or equal than 56 with parameters in Q[π]. Our
result is slightly different in form from the case of the general class of analytic
IVPs. Indeed, the coefficients of the polynomials are coded as finite sequences of
integers and not as ρ-name satisfying (5), though from these finite sequences of
integers one can easily compute ρ-names for the coefficients of the polynomials.
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The boundedness problem is decidable for linear differential equations thus
implying that the boundary between decidability/undecidability lies in the class
of polynomials of degree n, for some 2 ≤ n ≤ 56.

This result is shown using methods which differ from those employed in
[GZB07]. This result was already stated in [GBC07], but we now present its
proof.

The following result introduces the notion of maximal interval for ODEs and
follows as an immediate consequence of the fundamental existence-uniqueness
theory for the initial-value problem (17), where the analyticity condition is
dropped for f [CL55], [Lef65], [Hal80].

Proposition 20 Let E be an open subset of Rn+1 and assume that f : E → Rn
is continuous on E and locally Lipschitz in the second argument (i.e. in the last
n components). Then for each (t0, x0) ∈ E, the problem (17) has a unique
solution x(t) defined on a maximal interval (α, β), on which it is C1. The
maximal interval is open and has the property that, if β < +∞ (resp. α > −∞),
either (t, x(t)) approaches the boundary of E or x(t) is unbounded as t → β −

(resp. t→ α+).

Note that, as a particular case, when E = Rn+1 and β < ∞, x(t) is un-
bounded as t→ β −. This will be the case under study in this section.

We now introduce a definition that allows us to compare real numbers of
some given set, to avoid the trivial undecidability of the boundedness problem
sketched in Section 1.

Definition 21 We say that a set D ⊆ R is effectively comparable if D has a
naming system γ, if all elements of D are γ-computable, and if given γ-names
of x, y ∈ D, then x = y and x < y are decidable

In the previous definition, “naming system” is either a (finite) notation or
a (infinite) representation of the elements of D according to Weihrauch [Wei00,
p. 33 and p. 52]. Next we show that Q[π] is effectively comparable. Indeed,
given a0, . . . , am ∈ Q (which can easily be coded as a finite sequence using a
finite alphabet A), we can take the notation f : A∗ → Q[π]

f(a0, . . . , am) =
m∑
i=0

aiπ
i.

Moreover, if α, β ∈ Q[π],

α =
m∑
i=0

aiπ
i and β =

n∑
i=0

biπ
i,

where a0, . . . , am, b0, . . . , bn ∈ Q. We can decide if α = β since α = β iff ai = bi
for all i and ai and bi are rationals. We can also compute arbitrarly close
approximations of α and β. Therefore, if α 6= β, we can compare these values:
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we just need to start computing increasing approximations of α and β until we
decide whether α < β or α > β. The following result is similar to Theorem 12
in [GBC07], but here we restrict the parameters of the PIVP to an effectively
comparable set. This prevents the trivial undecidability discussed in Section 1.

Theorem 22 Let D be an effectively comparable set such that Q[π] ⊆ D. The
following problem is undecidable: “Given p : Rn+1 → Rn with polynomial com-
ponents with coefficients in D ((these coefficients are given by their names, as
described in Definition 21), and (t0, x0) ∈ Q×Qn, decide whether the maximal
interval of the IVP (1) is bounded or not”.

Actually, if we are given the description of a universal Turing machine, we
can constructively define a set of polynomial ODEs simulating it that encodes
the Halting Problem. If we use the small universal Turing machine presented
in [Rog96], having 4 states and 6 symbols, we obtain the following theorem.

Theorem 23 Let D be an effectively comparable set such that Q[π] ⊆ D. There
is a vector p : Rn+1 → Rn, with n ≥ 1, defined by polynomials with coefficients
in D (these coefficients are given by their names, as described in Definition 21),
where each component has degree less than or equal to 56, such that the following
problem is undecidable: “Given (t0, x0) ∈ Q×Qn, decide whether the maximal
interval of the IVP (1) is bounded or not”.

Proof. The idea to prove this theorem is to simulate with a set of polynomial
ODEs Rogozhin’s small universal Turing machine [Rog96]. We can obtain a set
of PIVPs simulating this Turing machine as described by Theorem 13, Proposi-
tion 14, and Corollary 15. Then we expand this PIVP system as a polynomial
ODE using the techniques introduced in the proof of Theorem 4. Since the
entire procedure is constructive and bottom-up, it is possible to determine the
degrees of the polynomials appearing in the IVP. This will be done later in the
proof.

The important point is that we can obtain a PIVP (1), with solution x, that
satisfies for every k ∈ N{

xq(t) ≤ m− 11
16 if M has not halted at step k and t ≤ k

xq(t) ≥ m− 5
16 if M has already halted at step k and t ≥ k (18)

where the states of the Turing machine are encoded by numbers in {1, . . . ,m}
and m = 4 is the Halting state. Consider the IVP{

z′1 = xq − (m− 1/2)
z2 = 1

z1

⇐⇒
{
z′1 = xq − (m− 1/2)
z′2 = ((m− 1/2)− xq)z2

2
(19)

where z1(0) = z2(0) = −1. Since xq appears as a component, we assume that
this IVP is coupled with the PIVP defined by Proposition 14 and Theorem 4.
It is easy to see that while M hasn’t halted, xq − (m− 1/2) ≤ −3/16. Thus z1

keeps decreasing and the IVP is defined in (0,+∞), i.e. the maximal interval is
unbounded, if M never halts.
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On the other hand, if M eventually halts, z1 starts increasing at a rate of
at least 3/16 and will do that forever. So, at some time it will have to assume
the value 0. When this happens, a singularity appears for z2 and the maximal
interval is therefore (right-)bounded. For negative values of t just replace t by
(−t) in the PIVP (1) and assume t to be positive. It can be shown that the
behavior of the system will be similar, and we reach the same conclusions for
the left bound of the maximal interval. So M halts iff the maximal interval of
the PIVP (19) is bounded, i.e. boundedness is undecidable.

It remains to determine the degree of the polynomials appearing in the
definition of (1) and (19). We will now sketch how this is done. In what
follows we assume that x and y are variables in an IVP, whose derivatives can
be written as a polynomial (possibly involving other variables of the IVP) of
degrees k and n, respectively (for short, we will simply say that x and y have
degree k and n). Then our task is to know what is the degree of the PIVP
giving functions like sinx, etc.

1. The case of sin and cos. We have{
(sinx)′ = x′ cosx
(cosx)′ = −x′ sinx =⇒

{
y′1 = x′y2

y′2 = −x′y1

where y1 and y2 substitute sinx and cosx, respectively. So, if x has degree
k, sinx and cosx can be replaced by variables having degree k + 1.

2. The case of arctan. One has (arctanx)′ = x′

1+x2(
1

1+x2

)′
= − 2x́x

(1+x2)2

=⇒
{
y′1 = x′y2

y′2 = −2x′xy2
2

where y1 replaces arctanx. So, arctanx can be replaced by a variable of
degree k + 1, but also introduces another variable of degree k + 3.

3. There are other functions that we didn’t describe in detail previously, and
that are used in our simulation (the reader is referred to [GCB08]). But
they are built from polynomials and the functions arctan and sin. So a
straightforward application of the proof of Theorem 4 and the cases 1
and 2 above are enough to understand what happens with the degree of
variables which derivative is described in terms of these functions.

Carrying out all the steps mentioned above, one can see that 56 is the highest
degree for a variable that appears in the polynomial expansion of the ODE
simulating Rogozhin’s small universal Turing machine.

Let us remark that, while the boundedness problem of the maximal interval
for unrestricted PIVPs is in general undecidable, this is not the case for some
subclasses of polynomials. For instance, the boundedness problem is decidable
for the class of linear differential equations (the maximal interval is always R —
see e.g. [Hal80, p. 79]) or for the class of one-dimensional autonomous differential
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equations where f is a polynomial of any degree (the ODE is separable, yielding
an integral of a rational function that can be algorithmically solved). It would
be interesting to investigate maximal classes where the boundedness problem is
decidable.

6 Conclusion

In this paper we provide further results that establish a bridge between the
theory of ODEs and computation (see [BC08] for an up-to-date review). We
focus on polynomial initial value problems with computable and comparable
parameters.

With respect to computation, our main result is that the boundness of the
maximal interval of definition is undecidable even for PIVPs with comparable
parameters and degree up to 56. We can view this result as a ODE analog to
the undecidability of the Halting problem for Turing machines.

With respect to polynomial ODEs, we show that they can simulate a large
class of dynamical systems – including Turing machines – in the presence of
noise.

Based on the previous results we argue that polynomial ODEs, which are
a well known model of physical phenomena, are also a powerful, yet realistic,
model of continuous time computation.
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