49 research outputs found

    Single-Step Production of a Recyclable Nanobiocatalyst for Organophosphate Pesticides Biodegradation Using Functionalized Bacterial Magnetosomes

    Get PDF
    Enzymes are versatile catalysts in laboratories and on an industrial scale; improving their immobilization would be beneficial to broadening their applicability and ensuring their (re)use. Lipid-coated nano-magnets produced by magnetotactic bacteria are suitable for a universally applicable single-step method of enzyme immobilization. By genetically functionalizing the membrane surrounding these magnetite particles with a phosphohydrolase, we engineered an easy-to-purify, robust and recyclable biocatalyst to degrade ethyl-paraoxon, a commonly used pesticide. For this, we genetically fused the opd gene from Flavobacterium sp. ATCC 27551 encoding a paraoxonase to mamC, an abundant protein of the magnetosome membrane in Magnetospirillum magneticum AMB-1. The MamC protein acts as an anchor for the paraoxonase to the magnetosome surface, thus producing magnetic nanoparticles displaying phosphohydrolase activity. Magnetosomes functionalized with Opd were easily recovered from genetically modified AMB-1 cells: after cellular disruption with a French press, the magnetic nanoparticles are purified using a commercially available magnetic separation system. The catalytic properties of the immobilized Opd were measured on ethyl-paraoxon hydrolysis: they are comparable with the purified enzyme, with Km (and kcat) values of 58 µM (and 178 s−1) and 43 µM (and 314 s−1) for the immobilized and purified enzyme respectively. The Opd, a metalloenzyme requiring a zinc cofactor, is thus properly matured in AMB-1. The recycling of the functionalized magnetosomes was investigated and their catalytic activity proved to be stable over repeated use for pesticide degradation. In this study, we demonstrate the easy production of functionalized magnetic nanoparticles with suitably genetically modified magnetotactic bacteria that are efficient as a reusable nanobiocatalyst for pesticides bioremediation in contaminated effluents

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Limits to reproduction and seed size-number tradeoffs that shape forest dominance and future recovery

    Get PDF
    The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential

    Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery

    Get PDF
    International audienceThe relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Nutrigenomic analysis of the protective effects of bilberry anthocyanin-rich extract in apo E-deficient mice

    No full text
    Intake of anthocyanin-rich foods has been associated with a reduced risk of cardiovascular diseases. Supplementation with anthocyanin-rich extracts from black rice or purple sweet potato was reported to attenuate atherosclerotic lesion development in apolipoprotein E-deficient (apo E−/−) mice. However, the mechanism(s) of their preventive action are not completely understood. Previous studies revealed that anthocyanins altered mRNA levels of genes related to atherosclerosis in cultured macrophages and endothelial cells, but in vivo studies remain scarce. The aim of the study was to investigate the impact of bilberry anthocyanin-rich extract (BE) supplementation on gene expression in the liver of apo E−/− mice, the widely used model of atherosclerosis. The liver was chosen because it is the main site of lipid metabolism. Apo E−/− mice received for 2 weeks a standard diet supplemented with a nutritional dose of BE (0.02%). This study focused on the early stage of atherosclerosis development for better assessment of anthocyanin action on initiation mechanisms of this pathology. The results showed that a 2-week supplementation significantly reduced plasmatic total cholesterol and hepatic triglyceride levels, whereas the plasmatic antioxidant status remained unchanged. Transcriptional analysis, using microarrays, revealed that the expression of 2,289 genes was significantly altered. BE over-expressed genes involved in bile acid synthesis and cholesterol uptake into the liver and down-regulated the expression of pro-inflammatory genes. These results suggest an anti-atherogenic effect of BE through the regulation of cholesterol metabolism and liver inflammation and provide a global integrated view of the mechanisms involved in the preventive action of this extract

    Role of the PI3-kinase/mTor pathway in the regulation of the stearoyl CoA desaturase (SCD1) gene expression by insulin in liver

    Get PDF
    The stearoyl-CoA desaturase 1 (SCD1) catalyzes the synthesis of monounsaturated fatty acids. This enzyme is a critical control point regulating hepatic lipogenesis and lipid oxidation. Therefore SCD1 may be a potential therapeutic target in the treatment of obesity and metabolic syndrome. Regulation of SCD1 expression occurs primarily at the level of transcription. In the present study, we characterized the insulin response elements (IREs) and the insulin signaling pathway mediating the regulation of SCD1 gene transcription in liver. In chicken embryo hepatocytes (CEH) and HepG2 cells, insulin stimulates SCD1 promoter activity by 2.5 folds. This activation is mediated by two different IREs on the chicken promoter, one localized between −1,975 and −1,610 bp and one between −372 and −297 bp. The latter binds both NF-Y and SREBP-1 transcription factors in response to insulin. We also demonstrated that insulin induction of SCD1 gene expression and promoter activity is abolished by pre-incubation of cells with specific inhibitors of both PI3-kinase (LY294002) and mTor (Rapamycin) or by over-expression of a dominant negative mutant of PI3-kinase. The PI3-kinase and mTor pathway mediates the insulin response on both IREs. In summary, insulin activates SCD1 gene expression in liver via a signaling pathway that involves PI3-kinase and mTor and the downstream transcription factors NF-Y and SREBP-1. Sentence summary: Insulin regulates SCD1 gene expression via two different IREs. The most 3′ IRE is localized between −372 and −297 bp and binds the NF-Y and SREBP-1 transcription factors in response to insulin. PI3-kinase and mTor mediate the action of insulin on both IREs

    Development of the self-modulation instability of a relativistic proton bunch in plasma

    No full text
    Self-modulation is a beam–plasma instability that is useful to drive large-amplitude wakefields with bunches much longer than the plasma skin depth. We present experimental results showing that, when increasing the ratio between the initial transverse size of the bunch and the plasma skin depth, the instability occurs later along the bunch, or not at all, over a fixed plasma length because the amplitude of the initial wakefields decreases. We show cases for which self-modulation does not develop, and we introduce a simple model discussing the conditions for which it would not occur after any plasma length. Changing bunch size and plasma electron density also changes the growth rate of the instability. We discuss the impact of these results on the design of a particle accelerator based on the self-modulation instability seeded by a relativistic ionization front, such as the future upgrade of the Advanced WAKefield Experiment
    corecore