888 research outputs found
The role graduate quantity surveyors in the Malaysian construction industry
The quantity surveying profession has evolved since changing of clients’ need and market requirements. Today, clients not only request the traditional services but also ask for the additional services such as project management, feasibility study, construction financial practice, arbitration, quality management, conflict management and risk management in the innovative and changing construction industry. The scope of works for graduate quantity surveyors is no longer limit on measurement and the regular practices but is some things beyond this boundary. Hence, the objective of this paper is to present a critical
review on the traditional and contemporary roles of graduate quantity surveyors, the threats to graduate quantity surveyors and also the methods to improve graduate quantity surveyors’ practice. In summary, this critical review would provide insight knowledge to construction industry players for better understanding of graduate quantity surveyors’ roles
Imaginary Squashing Mode Spectroscopy of Helium Three B
We have made precision measurements of the frequency of a collective mode of
the superfluid 3He-B order parameter, the J=2- imaginary squashing mode.
Measurements were performed at multiple pressures using interference of
transverse sound in an acoustic cavity. Transverse waves propagate in the
vicinity of this order parameter mode owing to off-resonant coupling. At the
crossing of the sound mode and the order parameter mode, the sound wave is
strongly attenuated. We use both velocity and attenuation measurements to
determine precise values of the mode frequency with a resolution between 0.1%
and 0.25%.Comment: 6 pages, 4 figures, submitted to proceedings of Quantum Fluids and
Solids (QFS) Conference 2006; revised 9/26/0
Perpendicular-current Studies of Electron Transport Across Metal/Metal Interfaces
We review what we have learned about the scattering of electrons by the
interfaces between two different metals (M1/M2) in the
current-perpendicular-to-plane (CPP) geometry. In this geometry, the intrinsic
quantity is the specific resistance, AR, the product of the area through which
the CPP current flows times the CPP resistance. We describe results for both
non-magnetic/non-magnetic (N1/N2) and ferromagnetic/non-magnetic (F/N) pairs.
We focus especially upon cases where M1/M2 are lattice matched (i.e., have the
same crystal structure and the same lattice parameters to within ~ 1%), because
in these cases no-free-parameter calculations of 2AR agree surprisingly well
with measured values. But we also list and briefly discuss cases where M1/M2
are not lattice matched, either having different crystal structures, or lattice
parameters that differ by several percent. The published calculations of 2AR in
these latter cases do not agree so well with measured values.Comment: 6 pages, 2 figures, 2 tables. In Press: Applied Surface Scienc
Bulk Versus Edge in the Quantum Hall Effect
The manifestation of the bulk quantum Hall effect on edge is the chiral
anomaly. The chiral anomaly {\it is} the underlying principle of the ``edge
approach'' of quantum Hall effect. In that approach, \sxy should not be taken
as the conductance derived from the space-local current-current correlation
function of the pure one-dimensional edge problem.Comment: 4 pages, RevTex, 1 postscript figur
Search for Small Trans-Neptunian Objects by the TAOS Project
The Taiwan-America Occultation Survey (TAOS) aims to determine the number of
small icy bodies in the outer reach of the Solar System by means of stellar
occultation. An array of 4 robotic small (D=0.5 m), wide-field (f/1.9)
telescopes have been installed at Lulin Observatory in Taiwan to simultaneously
monitor some thousand of stars for such rare occultation events. Because a
typical occultation event by a TNO a few km across will last for only a
fraction of a second, fast photometry is necessary. A special CCD readout
scheme has been devised to allow for stellar photometry taken a few times per
second. Effective analysis pipelines have been developed to process stellar
light curves and to correlate any possible flux changes among all telescopes. A
few billion photometric measurements have been collected since the routine
survey began in early 2005. Our preliminary result of a very low detection rate
suggests a deficit of small TNOs down to a few km size, consistent with the
extrapolation of some recent studies of larger (30--100 km) TNOs.Comment: 4 pages, 3 figures, IAU Symposium 23
Dietary iron intakes based on food composition data may underestimate the contribution of potentially exchangeable contaminant iron from soil
Iron intakes calculated from one-day weighed records were compared with those from same day analyzed duplicate diet composites collected from 120 Malawian women living in two rural districts with contrasting soil mineralogy and where threshing may contaminate cereals with soil iron. Soils and diet composites from the two districts were then subjected to a simulated gastrointestinal digestion and iron availability in the digests measured using a Caco-2 cell model. Median analyzed iron intakes (mg/d) were higher (p < 0.001) than calculated intakes in both Zombwe (16.6 vs. 10.1 mg/d) and Mikalango (29.6 vs. 19.1 mg/d), attributed to some soil contaminant iron based on high Al and Ti concentrations in diet composites. A small portion of iron in acidic soil from Zombwe, but not Mikalango calcareous soil, was bioavailable, as it induced ferritin expression in the cells, and may have contributed to higher plasma ferritin and total body iron for the Zombwe women reported earlier, despite lower iron intakes. In conclusion, iron intakes calculated from food composition data were underestimated, highlighting the importance of analyzing duplicate diet composites where extraneous contaminant iron from soil is likely. Acidic contaminant soil may make a small but useful contribution to iron nutrition
Stability conditions and positivity of invariants of fibrations
We study three methods that prove the positivity of a natural numerical
invariant associated to parameter families of polarized varieties. All
these methods involve different stability conditions. In dimension 2 we prove
that there is a natural connection between them, related to a yet another
stability condition, the linear stability. Finally we make some speculations
and prove new results in higher dimension.Comment: Final version, to appear in the Springer volume dedicated to Klaus
Hulek on the occasion of his 60-th birthda
Measurement of the Intrinsic Radiopurity of Cs-137/U-235/U-238/Th-232 in CsI(Tl) Crystal Scintillators
The inorganic crystal scintillator CsI(Tl) has been used for low energy
neutrino and Dark Matter experiments, where the intrinsic radiopurity is an
issue of major importance. Low-background data were taken with a CsI(Tl)
crystal array at the Kuo-Sheng Reactor Neutrino Laboratory. The pulse shape
discrimination capabilities of the crystal, as well as the temporal and spatial
correlations of the events, provide powerful means of measuring the intrinsic
radiopurity of Cs-137 as well as the U-235, U-238 and Th-232 series. The event
selection algorithms are described, with which the decay half-lives of Po-218,
Po-214, Rn-220, Po-216 and Po-212 were derived. The measurements of the
contamination levels, their concentration gradients with the crystal growth
axis, and the uniformity among different crystal samples, are reported. The
radiopurity in the U-238 and Th-232 series are comparable to those of the best
reported in other crystal scintillators. Significant improvements in
measurement sensitivities were achieved, similar to those from dedicated
massive liquid scintillator detector. This analysis also provides in situ
measurements of the detector performance parameters, such as spatial
resolution, quenching factors, and data acquisition dead time.Comment: 28 pages, 12 figure
Photon-Phonon-assisted tunneling through a single-molecular quantum dot
Based on exactly mapping of a many-body electron-phonon interaction problem
onto a one-body problem, we apply the well-established nonequilibrium Green
function technique to solve the time-dependent phonon-assisted tunneling at low
temperature through a single-molecular quantum dot connected to two leads,
which is subject to a microwave irradiation field. It is found that in the
presence of the electron-phonon interaction and the microwave irradiation
field, the time-average transmission and the nonlinear differential conductance
display additional peaks due to pure photon absorption or emission processes
and photon-absorption-assisted phonon emission processes. The variation of the
time-average current with frequency of the microwave irradiation field is also
studied.Comment: 9 pages, 6 figures, submitted to Phys. Rev. B. accepted by Phys. Rev.
- …