26 research outputs found
Electromagnetic Wave Theory and Applications
Contains reports on eleven research projects.Joint Services Electronics Program (Contract DAAG29-83-K-0003)Joint Services Electronics Program (Contract DAAL03-86-K-0002)National Science Foundation (Grant ECS82-03390)National Science Foundation (Grant ECS85-04381)Schlumberger-Doll Research CenterNational Aeronautics and Space Administration (Contract NAG 5-141)National Aeronautics and Space Administration (Contract NAS 5-26861)National Aeronautics and Space Administration (Contract NAG 5-270)U.S. Navy - Office of Naval Research (Contract N00014-83-K-0258)National Aeronautics and Space Administration (Contract NAG 5-725)International Business Machines, Inc.Lincoln Laborator
Electromagnetic Wave Theory and Applications
Contains table of contents for Section 3, research summary and reports on six research projects.Joint Services Electronics Program (Contract DAAL 03-86-K-0002)Joint Services Electronics Program (Contract DAAL 03-89-C-0001)U.S. Navy - Office of Naval Research (Contract N00014-86-K-0533)National Science Foundation (Contract ECS 86-20029)U.S. Army Research Office (Contract DAAL03 88-K-0057)International Business Machine CorporationSchlumberger-Doll ResearchNational Aeronautics and Space Administration (Contract NAG 5-270)U.S. Navy - Office of Naval Research (Contract N00014-83-K-0258)National Aeronautics and Space Administration (Contract NAG 5-769)U.S. Army Corps of Engineers - Waterways Experimental Station (Contract DACA39-87-K-0022)Simulation TechnologiesU.S. Air Force - Rome Air Development Center (Contract F19628-88-K-0013)U.S. Navy - Office of Naval Research (Contract N00014-89-J-1107)Digital Equipment Corporatio
Electromagnetic Wave Theory and Applications
Contains table of contents for Section 3 and reports on seven research projects.Joint Services Electronics Program Contract DAAL03-89-C-0001National Science Foundation Contract ECS 86-20029Schlumberger- Doll ResearchU.S. Army Research Office Contract DAAL03 88-K-0057National Aeronautics and Space Administration Contract NAGW-1617U.S. Navy - Office of Naval Research Contract N00014-89-J-1107National Aeronautics and Space Administration Contract NAGW-1272National Aeronautics and Space Administration Contract 958461Simulation Technologies Contract DAAH01-87-C-0679U.S. Army Corp of Engineers Contract DACA39-87-K-0022WaveTracer, Inc.U.S. Navy - Office of Naval Research Contract N00014-89-J-1019U.S. Air Force Systems - Electronic Systems Division Contract F19628-88-K-0013Digital Equipment CorporationInternational Business Machines CorporationU.S. Department of Transportation Contract DTRS-57-88-C-0007
Electromagnetic Wave Theory and Applications
Contains table of contents for Section 3, reports on six research projects and a list of publications and conference papers.Joint Services Electronics Program Contract DAAL03-89-C-0001National Science Foundation Grant ECS 86-20029Schlumberger- Doll ResearchU.S. Army Research Office Contract DAAL03 88-K-0057U.S. Navy - Office of Naval Research Contract N00014-90-J-1002National Aeronautics and Space Administration Grant NAGW-1617U.S. Navy - Office of Naval Research Grant N00014-89-J-1107National Aeronautics and Space Administration Grant NAGW-1272National Aeronautics and Space Administration Agreement 958461U.S. Army - Corps of Engineers Contract DACA39-87-K-0022U.S. Air Force - Electronic Systems Division Contract F19628-88-K-0013U.S. Navy - Office of Naval Research Grant N00014-89-J-1019Digital Equipment CorporationIBM CorporationU.S. Department of Transportation Contract DTRS-57-88-C-00078Defence Advanced Research Projects Agency Contract MDA972-90-C-002
Finite difference method for electromagnetic scattering problems
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1990.Includes bibliographical references (leaves 184-192).by Check F. Lee.Ph.D
Unprecedented Solvent-Assisted Reactivity of Hydrido W3CuS4 Cubane Clusters: The Non-Innocent Behaviour of the Cluster-Core Unit
Opening the cluster core: Substitution of the chloride ligand in the novel cationic cluster [W3CuS4H3Cl(dmpe)3]+ (see figure; dmpe=1,2-bis(dimethylphosphino)ethane) by acetonitrile is promoted by water addition. Kinetic and density functional theory studies lead to a mechanistic proposal in which acetonitrile or water attack causes the opening of the cluster core with dissociation of one of the CuS bonds to accommodate the entering ligand.
Reaction of the incomplete cuboidal cationic cluster [W3S4H3(dmpe)3]+ (dmpe=1,2-bis(dimethylphosphino)ethane) with CuI compounds produces rare examples of cationic heterodimetallic hydrido clusters of formula [W3CuClS4H3(dmpe)3]+ ([1]+) and [W3Cu(CH3CN)S4H3(dmpe)3]2+ ([2]2+). An unexpected conversion of [1]+ into [2]2+, which involves substitution of chloride by CH3CN at the copper centre, has been observed in CH3CN/H2O mixtures. Surprisingly, formation of the acetonitrile complex does not occur in neat acetonitrile and requires the presence of water. The kinetics of this reaction has been studied and the results indicate that the process is accelerated when the water concentration increases and is retarded in the presence of added chloride. Computational studies have also been carried out and a mechanism for the substitution reaction is proposed in which attack at the copper centre by acetonitrile or water causes disruption of the cubane-type core. ESI-MS experiments support the formation of intermediates with an open-core cluster structure. This kind of process is unprecedented in the chemistry of M3M′Q4 (M=Mo, W; Q=S, Se) clusters, and allows for the transient appearance of a new coordination site at the M′ site which could explain some aspects of the reactivity and catalytic properties of this kind of clusters