388 research outputs found

    Prediction model for high glycated hemoglobin concentration among ethnic Chinese in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aimed to construct a prediction model to identify subjects with high glycated hemoglobin (HbA1c) levels by incorporating anthropometric, lifestyle, clinical, and biochemical information in a large cross-sectional ethnic Chinese population in Taiwan from a health checkup center.</p> <p>Methods</p> <p>The prediction model was derived from multivariate logistic regression, and we evaluated the performance of the model in identifying the cases with high HbA1c levels (> = 7.0%). In total 17,773 participants (age > = 30 years) were recruited and 323 participants (1.8%) had high HbA1c levels. The study population was divided randomly into two parts, with 80% as the derivation data and 20% as the validation data.</p> <p>Results</p> <p>The point-based clinical model, including age (maximal 8 points), sex (1 point), family history (3 points), body mass index (2 points), waist circumference (4 points), and systolic blood pressure (3 points) reached an area under the receiver operating characteristic curve (AUC) of 0.723 (95% confidence interval, 0.677- 0.769) in the validation data. Adding biochemical measures such as triglycerides and HDL cholesterol improved the prediction power (AUC, 0.770 [0.723 - 0.817], <it>P </it>= < 0.001 compared with the clinical model). A cutoff point of 7 had a sensitivity of 0.76 to 0.96 and a specificity of 0.39 to 0.63 for the prediction model.</p> <p>Conclusions</p> <p>A prediction model was constructed for the prevalent risk of high HbA1c, which could be useful in identifying high risk subjects for diabetes among ethnic Chinese in Taiwan.</p

    Plasma fatty acids and the risk of metabolic syndrome in ethnic Chinese adults in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evidence of predictive power of various fatty acids on the risk of metabolic syndrome was scanty. We evaluated the role of various fatty acids, including saturated fat, monounsaturated fat, transfat, n-6 fatty acid, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), for the risk of the metabolic syndrome in Taiwan.</p> <p>Results</p> <p>A nested case-control study based on 1000 cases of metabolic syndrome and 1:1 matched control subjects. For saturated fat, monounsaturated fat and transfat, the higher the concentration the higher the risk for metabolic syndrome: participants in the highest quintile had a 2.22-fold (95% confidence interval [CI], 1.66 to 2.97) higher risk of metabolic syndrome. In addition, the participants in higher EPA quintiles were less likely to have the risk of metabolic syndrome (adjusted risk, 0.46 [0.34 to 0.61] for the fifth quintile). Participants in the highest risk group (low EPA and high transfat) had a 2.36-fold higher risk of metabolic syndrome (95% CI, 1.38 to 4.03), compared with those in the lowest risk group (high EPA and low transfat). For prediction power, the area under ROC curves increased from 0.926 in the baseline model to 0.928 after adding fatty acids. The net reclassification improvement for metabolic syndrome risk was substantial for saturated fat (2.1%, <it>P </it>= 0.05).</p> <p>Conclusions</p> <p>Plasma fatty acid components improved the prediction of the metabolic syndrome risk in Taiwan.</p

    Diagnosis and Treatment of Nontuberculous Mycobacterial Pulmonary Diseases: A Korean Perspective

    Get PDF
    The incidence of pulmonary disease caused by nontuberculous mycobacteria (NTM) appears to be increasing worldwide. In Korea, M. avium complex and M. abscessus account for most of the pathogens encountered, whilst M. kansasii is a relatively uncommon cause of NTM pulmonary diseases. NTM pulmonary disease is highly complex in terms of its clinical presentation and management. Because its clinical features are indistinguishable from those of pulmonary tuberculosis and NTMs are ubiquitous in the environment, the isolation and identification of causative organisms are mandatory for diagnosis, and some specific diagnostic criteria have been proposed. The treatment of NTM pulmonary disease depends on the infecting species, but decisions concerning the institution of treatment are never easy. Treatment requires the use of multiple drugs for 18 to 24 months. Thus, treatment is expensive, often has significant side effects, and is frequently not curative. Therefore, clinicians should be confident that there is sufficient pathology to warrant prolonged, multidrug treatment regimens. In all of the situations, outcomes can be best optimized only when clinicians, radiologists, and laboratories work cooperatively

    Erlotinib or gefitinib for the treatment of relapsed platinum pretreated non-small cell lung cancer and ovarian cancer: a systematic review

    Get PDF
    BACKGROUND: Platinum-based chemotherapy is the standard of care for ovarian cancer and non-small cell lung cancer (NSCLC). However, resistance to platinum agents invariably develops. Targeted therapies, such as tyrosine kinase inhibitors (TKIs), have great potential here as they exert their anti-tumour effect via alternative mechanisms to platinum-based drugs and as such may remain unaffected by emergent resistance to platinum. METHODS: A systematic review was conducted to investigate whether two EGFR-TKIs, erlotinib and gefitinib, have efficacy in the platinum-resistance setting. Preclinical studies of platinum-resistant cancer cell lines, which had been subsequently treated with EGFR-TKIs, were sought to establish proof-of-concept. Clinical trials reporting administration of EGFR-TKIs to ovarian cancer and NSCLC patients relapsed after therapy with platinum drugs were investigated to determine sensitivity of these cohorts to EGFR-TKI treatment. The role of EGFR mutation, copy number and protein expression on response to EGFR-TKIs after failure of platinum chemotherapy were also investigated. RESULTS: Preclinical models of platinum-resistant cancer were found which display a spectrum of cross-resistance profiles to EGFR-TKIs. Sensitivity to EGFR-TKIs is dependent on the activation of the EGFR pathway or EGFR interacting proteins such as HER-2. EGFR-TKIs show favourable response rates in platinum-pretreated NSCLC, 11.14% and 15.25% for 150mg/day erlotinib and 250mg/day gefitinib, respectively. These response rates significantly improve in patients of Asian descent (28.3% and 29.17%, respectively) and patients with EGFR activation mutations (41.6% and 63.89%, respectively) or increased copy number (33.3% and 45.45%, respectively). Gefitinib significantly outperformed erlotinib and should therefore be the EGFR-TKI of choice in platinum-pretreated relapsed NSCLC. In contrast, response rates are very poor to both erlotinib and gefitinib in platinum pretreated ovarian cancer, 0-5.9% and they should not be used in this cohort of patients. Preclinical models demonstrate that, while cross resistance can occur between platinums and EGFR-TKIs, there is not a generalised cross-resistance phenotype. Erlotinib and gefitinib are suitable for the treatment of platinum-pretreated NSCLC, particularly in patients with EGFR mutations or increases in copy number. Unfortunately, the high rates of EGFR protein overexpression in ovarian cancer are not translating to a clinically useful therapeutic target for EGFR-TKIs; EGFR mutations are rare in ovarian cancer. Newer TKIs may improve response rates in these cohorts and future clinical trials need to collect tumour biopsies from all patients to ensure the success of personalised chemotherapy

    Genome profiling of ERBB2-amplified breast cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Around 20% of breast cancers (BC) show <it>ERBB2 </it>gene amplification and overexpression of the ERBB2 tyrosine kinase receptor. They are associated with a poor prognosis but can benefit from targeted therapy. A better knowledge of these BCs, genomically and biologically heterogeneous, may help understand their behavior and design new therapeutic strategies.</p> <p>Methods</p> <p>We defined the high resolution genome and gene expression profiles of 54 <it>ERBB2</it>-amplified BCs using 244K oligonucleotide array-comparative genomic hybridization and whole-genome DNA microarrays. Expression of ERBB2, phosphorylated ERBB2, EGFR, IGF1R and FOXA1 proteins was assessed by immunohistochemistry to evaluate the functional ERBB2 status and identify co-expressions.</p> <p>Results</p> <p>First, we identified the <it>ERBB2</it>-<it>C17orf37</it>-<it>GRB7 </it>genomic segment as the minimal common 17q12-q21 amplicon, and <it>CRKRS </it>and <it>IKZF3 </it>as the most frequent centromeric and telomeric amplicon borders, respectively. Second, GISTIC analysis identified 17 other genome regions affected by copy number aberration (CNA) (amplifications, gains, losses). The expression of 37 genes of these regions was deregulated. Third, two types of heterogeneity were observed in <it>ERBB2</it>-amplified BCs. The genomic profiles of estrogen receptor-postive (ER+) and negative (ER-) <it>ERBB2</it>-amplified BCs were different. The WNT/β-catenin signaling pathway was involved in ER- <it>ERBB2</it>-amplified BCs, and <it>PVT1 </it>and <it>TRPS1 </it>were candidate oncogenes associated with ER+ <it>ERBB2</it>-amplified BCs. The size of the <it>ERBB2 </it>amplicon was different in inflammatory (IBC) and non-inflammatory BCs. <it>ERBB2</it>-amplified IBCs were characterized by the downregulated and upregulated mRNA expression of ten and two genes in proportion to CNA, respectively. IHC results showed (i) a linear relationship between <it>ERBB2 </it>gene amplification and its gene and protein expressions with a good correlation between ERBB2 expression and phosphorylation status; (ii) a potential signaling cross-talk between EGFR or IGF1R and ERBB2, which could influence response of <it>ERBB2</it>-positive BCs to inhibitors. FOXA1 was frequently coexpressed with ERBB2 but its expression did not impact on the outcome of patients with <it>ERBB2</it>-amplified tumors.</p> <p>Conclusion</p> <p>We have shown that ER+ and ER- <it>ERBB2</it>-amplified BCs are different, distinguished <it>ERBB2 </it>amplicons in IBC and non-IBC, and identified genomic features that may be useful in the design of alternative therapeutical strategies.</p

    Tissue-specific gene expression templates for accurate molecular characterization of the normal physiological states of multiple human tissues with implication in development and cancer studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To elucidate the molecular complications in many complex diseases, we argue for the priority to construct a model representing the normal physiological state of a cell/tissue.</p> <p>Results</p> <p>By analyzing three independent microarray datasets on normal human tissues, we established a quantitative molecular model GET, which consists of 24 tissue-specific <it>G</it>ene <it>E</it>xpression <it>T</it>emplates constructed from a set of 56 genes, for predicting 24 distinct tissue types under disease-free condition. 99.2% correctness was reached when a large-scale validation was performed on 61 new datasets to test the tissue-prediction power of GET. Network analysis based on molecular interactions suggests a potential role of these 56 genes in tissue differentiation and carcinogenesis.</p> <p>Applying GET to transcriptomic datasets produced from tissue development studies the results correlated well with developmental stages. Cancerous tissues and cell lines yielded significantly lower correlation with GET than the normal tissues. GET distinguished melanoma from normal skin tissue or benign skin tumor with 96% sensitivity and 89% specificity.</p> <p>Conclusions</p> <p>These results strongly suggest that a normal tissue or cell may uphold its normal functioning and morphology by maintaining specific chemical stoichiometry among genes. The state of stoichiometry can be depicted by a compact set of representative genes such as the 56 genes obtained here. A significant deviation from normal stoichiometry may result in malfunction or abnormal growth of the cells.</p

    Squamocin modulates histone H3 phosphorylation levels and induces G1 phase arrest and apoptosis in cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Histone modifications in tumorigenesis are increasingly recognized as important epigenetic factors leading to cancer. Increased phosphorylation levels of histone H3 as a result of aurora B and pMSK1 overexpression were observed in various tumors. We selected <it>aurora B </it>and <it>MSK1 </it>as representatives for testing various compounds and drugs, and found that squamocin, a bis-tetrahydrofuran annonaceous acetogenin, exerted a potent effect on histone H3 phosphorylation.</p> <p>Methods</p> <p>GBM8401, Huh-7, and SW620 cells were incubated with 15, 30, and 60 μM squamocin for 24 h. The expressions of mRNA and proteins were analyzed by qRT-PCR and Western blotting, respectively. The cell viability was determined by an MTT assay. Cell cycle distribution and apoptotic cells were analyzed by flow cytometry.</p> <p>Results</p> <p>Our results showed that squamocin inhibited the proliferation of GBM8401, Huh-7, and SW620 cells, arrested the cell cycle at the G<sub>1 </sub>phase, and activated both intrinsic and extrinsic pathways to apoptosis. In addition, we demonstrated that squamocin had the ability to modulate the phosphorylation levels of H3S10 (H3S10p) and H3S28 (H3S28p) in association with the downregulation of aurora B and pMSK1 expressions.</p> <p>Conclusions</p> <p>This study is the first to show that squamocin affects epigenetic alterations by modulating histone H3 phosphorylation at S10 and S28, providing a novel view of the antitumor mechanism of squamocin.</p
    corecore