733 research outputs found
Intelligent Control of Autonomous Six-Legged Robots by Neural Networks
Autonomous mobile six-legged robots are able to demonstrate the potential of intelligent control systems based on recurrent neural networks. The robots evaluate only two forward and two backward looking infrared sensor signals. Fast converging genetic training algorithms are applied to train the robots to move straight in six directions. The robots performed successfully within an obstacle environment and there could be observed a never trained useful interaction between each of the single robots. The paper describes the robot systems and presents the test results. Video clips are downloadable under www.inform.fh-hannover.de/download/lechner.php. Held on IFAC International Conference on Intelligent Control Systems and Signal Processing (ICONS 2003, April 2003, Portugal)
Fast jets from bubbles close to solid objects: examples from pillars in water to infinite planes in different liquids
The dynamics of a single, laser-induced cavitation bubble on top of a solid cylinder and right at a plane solid boundary is studiedboth experimentally and numerically. The most intriguing phenomenon that occurs for a millimeter sized bubble right at a flatsolid boundary in water is the formation of a fast jet that is directed towards the solid with a speed of the order of 1000 m/s.Paradoxically, in this setting, fast jet formation causally is related to the viscosity of the liquid.Thus, results from numericalsimulations with varying liquid viscosity and bubble size are presented. Bubble dynamics and jet formation mechanisms arediscussed. It is shown, that fast jet formation persists for a wide range of liquid viscosities, including e.g. 50 cSt silicone oil. Forbubbles generated close to the flat top of a long, thin cylinder the parameter space of initial distance to the cylinder, bubble size andcylinder radius is scanned numerically and partly compared to experiments. When the maximum radius of the bubble exceeds theone of the cylinder the bubble collapses in the form of a mushroom or can resemble a trophy, depending on the values of thegeometry parameters. Complex patterns of jet formation with jet speeds ranging from the order of a few hundred m/s to severalthousand m/s are found.The results represent a contribution to understand the behavior of bubbles collapsing close to solid surfaces,in particular, how thin, fast jets are generated
Experimental analysis on the influence of freeform bending on Barkhausen noise for steel tubes
Freeform bending with a movable die makes it possible to bend complex structures and seamless radii without changing the bending tools. Currently, most research focuses on minimizing the geometrical deviations without considering the mechanical properties of the bent tubes. A previous work showed, that the geometry can be decoupled from the mechanical properties with non-tangential bending [1]. The implementation of a soft sensor based on ultrasonic contact impedance measurements (UCI) of the property-controlled freeform bending has also been examined [2], as well as a structure for closed-loop control based on material properties [3]. The present work deals with a micro-magnetic sensor and Barkhausen noise (BHN) and investigates its suitability for the closed-loop control. For this purpose, different processing routes for freeform-bent steel tubes are experimentally investigated by their characteristic BHN. In addition to an existing simulation model, a data basis for the impact of freeform bending parameters is built to extend the existing model of a property-based closed-loop control
The human papillomavirus type 16 E7 oncoprotein targets Myc-interacting zinc-finger protein-1
AbstractWe demonstrate that HPV-16 E7 forms a complex with Miz-1. UV-induced expression of the CDK-inhibitor p21Cip1 and subsequent cell cycle arrest depends upon endogenous Miz-1 in HPV-negative C33A cervical cancer cells containing mutated p53. Transient expression of E7 in C33A inhibits UV-induced expression of p21Cip1 and overcomes Miz-1-induced G1-phase arrest. The C-terminal E7Δ79LEDLL83-mutant with reduced Miz-1-binding capacity was impaired in its capability to repress p21Cip1 expression; whereas the pRB-binding-deficient E7C24G-mutant inhibited p21Cip1 expression similar to wild-type E7. Using ChIP, we demonstrate that endogenous E7 is bound to the endogenous p21Cip1 core-promoter in CaSki cells and RNAi-mediated knock down of Miz-1 abrogates E7-binding to the p21Cip1 promoter. Co-expression of E7 with Miz-1 inhibited Miz-1-induced p21Cip1 expression from the minimal-promoter via Miz-1 DNA-binding sites. Co-expression of E7Δ79LEDLL83 did not inhibit Miz-1-induced p21Cip1 expression. E7C24G retained E7-wild-type capability to inhibit Miz-1-dependent transactivation. These findings suggest that HPV-16 E7 can repress Miz-1-induced p21Cip1 gene expression
The born again (VLTP) scenario revisited: The mass of the remnants and implications for V4334 Sgr
We present 1-D numerical simulations of the very late thermal pulse
(VLTP) scenario for a wide range of remnant masses. We show that by taking
into account the different possible remnant masses, the observed evolution of
V4334 Sgr (a.k.a. Sakurai's Object) can be reproduced within the standard
1D-MLT stellar evolutionary models without the inclusion of any
reduced mixing efficiency. Our simulations hint at a consistent picture with
present observations of V4334 Sgr. From energetics, and within the standard MLT
approach, we show that low mass remnants \hbox{(\msun)} are
expected to behave markedly different than higher mass remnants
\hbox{(\msun)} in the sense that the latter are not expected to
expand significantly as a result of the violent H-burning that takes place
during the VLTP. We also assess the discrepancy in the born again times
obtained by different authors by comparing the energy that can be liberated by
H-burning during the VLTP event.Comment: Submitted to MNRAS. In includes an appendix regarding the treatment
of reduced convective motions within the Mixing Length Theor
V605 Aquilae: a born again star, a nova or both?
V605 Aquilae is today widely assumed to have been the result of a final
helium shell flash occurring on a single post-asymptotic giant branch star. The
fact that the outbursting star is in the middle of an old planetary nebula and
that the ejecta associated with the outburst is hydrogen deficient supports
this diagnosis. However, the material ejected during that outburst is also
extremely neon rich, suggesting that it derives from an oxygen-neon-magnesium
star, as is the case in the so-called neon novae. We have therefore attempted
to construct a scenario that explains all the observations of the nebula and
its central star, including the ejecta abundances. We find two scenarios that
have the potential to explain the observations, although neither is a perfect
match. The first scenario invokes the merger of a main sequence star and a
massive oxygen-neon-magnesium white dwarf. The second invokes an
oxygen-neon-magnesium classical nova that takes place shortly after a final
helium shell flash. The main drawback of the first scenario is the inability to
determine whether the ejecta would have the observed composition and whether a
merger could result in the observed hydrogen-deficient stellar abundances
observed in the star today. The second scenario is based on better understood
physics, but, through a population synthesis technique, we determine that its
frequency of occurrence should be very low and possibly lower than what is
implied by the number of observed systems. While we could not envisage a
scenario that naturally explains this object, this is the second final flash
star which, upon closer scrutiny, is found to have hydrogen-deficient ejecta
with abnormally high neon abundances. These findings are in stark contrast with
the predictions of the final helium shell flash and beg for an alternative
explanation.Comment: 8 pages, 1 figures, 2 tables, accepted for MNRAS. Better title and
minor corrections compared to previous versio
Localization and the interface between quantum mechanics, quantum field theory and quantum gravity I (The two antagonistic localizations and their asymptotic compatibility)
It is shown that there are significant conceptual differences between QM and
QFT which make it difficult to view the latter as just a relativistic extension
of the principles of QM. At the root of this is a fundamental distiction
between Born-localization in QM (which in the relativistic context changes its
name to Newton-Wigner localization) and modular localization which is the
localization underlying QFT, after one separates it from its standard
presentation in terms of field coordinates. The first comes with a probability
notion and projection operators, whereas the latter describes causal
propagation in QFT and leads to thermal aspects of locally reduced finite
energy states. The Born-Newton-Wigner localization in QFT is only applicable
asymptotically and the covariant correlation between asymptotic in and out
localization projectors is the basis of the existence of an invariant
scattering matrix. In this first part of a two part essay the modular
localization (the intrinsic content of field localization) and its
philosophical consequences take the center stage. Important physical
consequences of vacuum polarization will be the main topic of part II. Both
parts together form a rather comprehensive presentation of known consequences
of the two antagonistic localization concepts, including the those of its
misunderstandings in string theory.Comment: 63 pages corrections, reformulations, references adde
Pathogenic Fungi Regulate Immunity by Inducing Neutrophilic Myeloid-Derived Suppressor Cells
Peer reviewedPublisher PD
- …