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Abstract: Autonomous mobile six-legged robots are able to demonstrate the
potential of intelligent control systems based on recurrent neural networks. The
robots evaluate only two forward and two backward looking infrared sensor signals.
Fast converging genetic training algorithms are applied to train the robots to
move straight in six directions. The robots performed successfully within an
obstacle environment and there could be observed a never trained useful interaction
between each of the single robots. The paper describes the robot systems and
presents the test results. Video clips are downloadable under www.inform.fh-
hannover.de/download/lechner.php. Copyright 2003 IFAC
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1. INTRODUCTION

The computational intelligence of control systems
could be demonstrated by the observation of mo-
bile mini robots within an obstacle environment.
Only a few simple movement patterns, like for-
ward, backward and diagonal walking, are trained
to the recurrent neural network. The important
questions to answer are: How do the mini robots
perform within an unknown obstacle environment
and to what extent could the robots demonstrate
intelligence ? Is there an untrained intelligent in-
teraction between the robots ? Referring to this
questions, three sixed-legged mini robot assem-
bly kits with relative simple mechanic parts were
bought and then equipped with electronic circuits
and a microprocessor for robot control.

1 werner.lechner@inform.fh-hannover.de
2 frank.mueller@inform.fh-hannover.de

2. SIX-LEGGED ROBOTS

For nearly ten years autonomous robots with
four, six or eight legs were developed. Typical
examples are the ”Moritz” robot (Zagler et al.,
2000), that is able to craw inside a tube system
or the ”Tarry” robots (Frik et al., 1999), which
move within an unknown environment. Compared
to these robots, the robots presented in this paper
are not build for a specific workload, because the
aim of this research project was to demonstrate
artificial intelligence of crawling robots.

The used Lynxmotion Hexpod robot kit includes
the mechanic parts and twelve servo motors. Servo
controllers are additionally required. Each one of
the six legs is driven by two servos, the first lifts
the leg and the second rotates it. The electronic
circuits control the 12 servos, trigger the four
infrared emitters, evaluate the signals of two in-
frared detectors and supply the microprocessor

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Server für wissenschaftliche Schriften der Hochschule Hannover

https://core.ac.uk/display/35285539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. Picture of the mobile robot

with current. The infrared sensors simulate two
eyes for forward looking and further two eyes for
backward looking. A picture of the robot is shown
in fig. 1. The microprocessor mounted on the top
is a ”Basic-Tiger” control unit with 1MB RAM,
128kB FLASH-ROM, two serial lines and four
A/D-interfaces. The robot is autonomous, but for
comfortable testing there are optional interfaces
for external power supply and a serial line inter-
face to connect the robot to a computer.

The motion is calculated on the basis of cycling
functions with different radials for the left and
right legs and increasing or decreasing phase an-
gles. Each one of the legs performs its own elliptic
pattern. Fig. 2 sketches the movement principle.
While three legs (fl = front left, mr = middle
right, bl = back left) contact the ground and carry
the weight of the robot, the the other three legs
(fr = front right, ml = middle left, br = back
right) are lifted and rotated in the meantime. The
robot turns left, if the radials of the left legs are
smaller than the radials of the right legs. Fig.
3 displays the steering signals of the 12 servo
motors in the case of a forward movement. A
complete forward step consists out of 12 angle
increments each 30 degree wide. For continues
movement the sequences of these signals are re-
peated. Decreasing phase angles lead to backward
movements. Symmetric variations of the radials
influence the speed of the robot and in the case
of different radials on the left and right sided

Fig. 2. Movement patterns of the robot legs
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Fig. 3. Steering signals

legs, the robot is able to perform turns. All the
movement parameters were optimally adjusted by
experimental steering sequences, because the mass
of the robot, the mechanic constants and even the
limited power consumption influence the dynamic
of the movement pattern.

3. NEURAL NETWORK DESIGN

The neural network should be capable to learn
the robots basic movement patterns, but in or-
der to demonstrate intelligent control within an
environment of arbitrary placed obstacles, it is
necessary that the neural network offers dynamic
output signals and is able to generalize to a high
extend. A further pragmatic condition for this
neural network design was the needed relative fast
convergence of the training algorithms. Due to all
of this reasons a recurrent neural network topol-
ogy with a limited number of feedback signals
was selected (fig. 4). The topology is characterized
by a backward linked chain of neurons in the
hidden layer. The neurons within the hidden layer
are connected to the neurons of the output layer
and backward linked to the input of each neigh-
borhood neuron up and below the corresponding
neuron. The neuron at the bottom of the hidden
layer sends its output signal back to the input of

Fig. 4. Recurrent neural network



the neuron on the top of the hidden layer and
the same is done in reverse. This topology was
first published 1997 by Hotop et al. and could be
interpreted as a simplification of the Elman(1990)
network.

For the implemented neural network the L=12
neurons of the input layer evaluate S=4 infrared
sensor signals and an clock signal C=1. The hid-
den layer includes K=24 neurons. The L=12 neu-
rons in the output layer control the 12 servos of
the robot. Therefore the total number of weights
sums up to 684.

(S + C) · N + (N + 2) · K + K · L = 684

In fig. 4 the parameters are N = 3; K = 5; L = 3.

4. GENETIC ALGORITHMS

Pham et al. (1999) demonstrated, that genetic
training algorithms could be successfully applied
for recurrent neural networks of the Elman typ.
Fig. 5 shows the principle of the developed special
genetic algorithms, that start with eight matrix
sets of neural weights (populations). The algo-
rithm minimizes the quadratic error difference
between the network output and the defined and
pre-calculated movement patterns of the robots.
The eight populations are distributed to the eight
main boards of a Siemens HPC-Line distributed
memory parallel computer (left part of fig. 7). A
limited number of iteration loops are performed
on each single board. Then the eight weight matri-
ces are reduced to the first board, where crossover
and mutation algorithms are carried out. The best
population survives and the worst population is
replaced by a randomly selected one. The refer-
ence signals are equal to the number of move-
ment patterns, that should be trained and each
pattern includes twelve single signals (fig. 3). The
parallel programmed algorithms calculated for six

Fig. 5. Genetic Algorithm
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Fig. 6. Error signals during training

movement patterns (6x12=78 output signals) the
values of the 684 neural weights within two hours.

Fig. 6 displays the maximal deviation between the
output of the neural network and the reference
output signals as a function of the number of
training cycles. For the HPCLine parallel com-
puter the number of cycles correspond nearly to
the amount of minutes of computing time. At the
end of the convergent training the neural out-
put signals and the reference patterns show no
significant difference. During the training cycles
the statistics of the neural weights approximates
the Gaussian normal distribution with a vanishing
mean value and a standard deviation of ± 0.8.

5. SOFTWARE DEVELOPMENT

The software development system consists of a
parallel computer, a standard PC and a program-
ming board for the microprocessor of the robot
(fig. 7). First a set of neural weights are calculated
on the parallel computer and then downloaded to
the PC, which offers software tools to program
the microprocessor of the robot and to load the
neural weights to its flash memory. Then the
robots were observed how they perform within the
obstacle environment and based on this test re-
sults, the parameters of the neural network could
be changed or different movement patterns could
be selected and the software development process
starts again.

Fig. 7. Software development environment



6. EXPERIMENTS

This section describes several tests of robots, that
are trained to move only straight forward or to
move in six directions as shown in fig. 8. For
example, if the robot detects only front left (fl=1)
and a front right (fr=1) obstacles, it performs
the trained backward movement. Or, if there is
only a back left (bl=1) infrared echo, the robot
turns to the right. The four infrared sensors would
generally allow a total number of 16 training
patterns, however, the below listed six patterns
are sufficient for intelligent robot control in an
obstacle environment.

(1) fl = fr = bl = br = 0 =⇒ forward move

(2) fl = 1 ∧ fr = 1 ∧ bl = br = 0 =⇒ backward move

(3) fl = 1 ∧ fr = 0 ∧ bl = br = 0 =⇒ turn right

(4) fl = 0 ∧ fr = 1 ∧ bl = br = 0 =⇒ turn left

(5) fl = fr = 0 ∧ bl = 1 ∧ br = 0 =⇒ turn left

(6) fl = fr = 0 ∧ bl = 0 ∧ br = 1 =⇒ turn right

6.1 Single robot with forward movement knowledge

For this test a robot is trained only with the
first training pattern(1). In other words, it is said
to the robot: If there is nothing to see, move
straight forward. If not, make your own choice
for a suitable movement. Fig. 9 shows in the left
above part the start position of the robot. Moving
straight ahead, the robot detects two obstacles
with a narrow gap, so the robot is unable to pass
through the middle of the obstacles. Surprisingly
the robot immediately turns left (above right part
of fig. 9). Then further left turns could be observed
(bottom left part of fig. 9) and then the robot is
going to pass the obstacle on the left side (bottom
right part of fig. 9). During this tests, the robot
sometimes stops first or starts to move even a
single step backward or turns right, but in the
end the robot passes the obstacle on the left or on
the right side. Please remember: Only the straight
forward movement pattern(1) was trained.

In the next experiment the gap is set wider.
As shown in fig. 10, the robot approaches the
obstacle (left above part of fig. 10) and receives

Fig. 8. Training patterns

Fig. 9. Forward moving robot approaching a gap
that is too narrow to pass through

reflected infrared signals. But now - compared to
the narrow gab of fig. 9 - the robot corrects its
direction first to the right (right above part of fig.
10) and then to the left (left bottom part of fig.
10) and then it passes through the middle of the
gap (fig. 10).

In both experiments (fig. 9, fig. 10) the robot
was controlled by a neural network, that was able
to generalize the trained simple advice(1): Move
straight forward, if there is no obstacle to detect.

Fig. 10. Forward moving robot approaching a gap
that is wide enough to pass through



Fig. 11. Escaping robot

6.2 Single robot with six direction knowledge

In the next experiment a robot is trained to move
in six 60-degree directions (fig. 8). The above
part of fig. 11 shows such a robot that tries to
escape through a ring of the obstacles. The robot
keeps turning as well as moving backward until
the receivers detect a direction that is free of
obstacles and then the robots starts to walk in
this direction (bottom part fig. of fig. 11) . The
robots of fig. 9 and fig. 10 were mostly not able
to escape, because the generalization of the single
forward movement pattern(1) of this robots was
not sufficient for intelligent control within a ring
of obstacles.

6.3 Two robots with six direction knowledge

During this experiment two robots with six direc-
tion knowledge are used. Fig. 12 shows in the left
above part the robots moving towards each other
on a collision approach. The robot below detects
first the opposite second robot and turns to the
right (right above part of fig. 12). The second
robot notices infrared reflections on both of its
front receivers and immediately stops, although a
stop was never trained. During this stop the first
robot could pass. In the bottom part of fig. 12
both robots freely pass each other.

The intelligent control of the robots was influ-
enced by an unknown mixture of infrared signals

Fig. 12. Collision approach of two robots

(see the manually painted white lines in the above
left part of fig. 12). The emitted infrared signals
of the first robot are detected by the receivers of
the second robot and the same in reverse, because
the electronic circuits make no difference between
the received signals. The reason for this electronic
design was, that the movement of the robots in the
case of randomly received infrared signals should
be observed.

In every experiment, the robots avoided the col-
lision. Even if two robots walking in a line (left
part of fig. 13), the faster robot behind recognizes
the first robot, turns immediately to right (right
part of fig. 13) and moves away.

Fig. 13. Two robots walking in a line



6.4 Three robots with six direction knowledge

During this experiments three robots are ob-
served, how they perform within an obstacle en-
vironment. Look with a left to right and a top to
bottom reading sequence at fig. 14. Starting from
a parallel position, all robots detect obstacles, but
only the left robot moves forward and escapes
through the front gap, while the two other robots
perform turning and waiting patterns. While the
first robot is heading the obstacle in the sec-
ond line, the next robot detects the free passage
through the first gap and follows the first robot.
If the last robot does not see an obstacle, it starts
to pass through the obstacles.

The principle of the movements is based on the
fact, that any robot walking behind or in front of
another robot considers this robot as an obstacle
and tries to avoid collision by turning, waiting or
walking backward. The robots perform collision-
free movements and at least all pass through
obstacles (right bottom part of fig. 14).

Fig. 14. Three robots passing through obstacles

7. CONCLUSIONS

The paper described the experiments with recur-
rent neural network driven autonomous robots in
order to demonstrate the possibilities of intelligent
control. Based on the generalization of straight
line movement patterns the robots avoided any
collision among each other as well as with ob-
stacles. Fascinating, complicated and never ex-
pected movement patterns could be observed dur-
ing the experiments. The corresponding video
clips could be downloaded under www.inform.fh-
hannover.de/download/lechner.php.

Due to the four infrared emitters only six logical
true/false conditions (fig. 8) were trained. How-
ever, during the experiments the receivers detect
a signal mixture reflected by an obstacle or direct
emitted by another robot in the range 0 ≤ x ≤ 1
with 10 increments. Therefore the neural network
evaluates 104 different input signal sets, each set
consists of four real numbers in the above defined
range. In other words: Only 6/104 or 0.06% of
the neural network input signals are used by the
training algorithms.

Lots of experiments with different types and and
numbers of training patterns demonstrated, that
the presented specific recurrent neural network
topology with the ring of backward linked neurons
in the hidden layer, has the potential for intelli-
gent control. The amount of training patterns was
kept very low and the robots performed generally
much better than trained.
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