47 research outputs found

    Somatic, germline and sex hierarchy regulated gene expression during Drosophila metamorphosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Drosophila melanogaster </it>undergoes a complete metamorphosis, during which time the larval male and female forms transition into sexually dimorphic, reproductive adult forms. To understand this complex morphogenetic process at a molecular-genetic level, whole genome microarray analyses were performed.</p> <p>Results</p> <p>The temporal gene expression patterns during metamorphosis were determined for all predicted genes, in both somatic and germline tissues of males and females separately. Temporal changes in transcript abundance for genes of known functions were found to correlate with known developmental processes that occur during metamorphosis. We find that large numbers of genes are sex-differentially expressed in both male and female germline tissues, and relatively few are sex-differentially expressed in somatic tissues. The majority of genes with somatic, sex-differential expression were found to be expressed in a stage-specific manner, suggesting that they mediate discrete developmental events. The <it>Sex-lethal </it>paralog, <it>CG3056</it>, displays somatic, male-biased expression at several time points in metamorphosis. Gene expression downstream of the somatic, sex determination genes <it>transformer </it>and <it>doublesex (dsx) </it>was examined in two-day old pupae, which allowed for the identification of genes regulated as a consequence of the sex determination hierarchy. These include the homeotic gene <it>abdominal A</it>, which is more highly expressed in females as compared to males, as a consequence of <it>dsx</it>. For most genes regulated downstream of <it>dsx </it>during pupal development, the mode of regulation is distinct from that observed for the well-studied direct targets of DSX, <it>Yolk protein 1 </it>and <it>2</it>.</p> <p>Conclusion</p> <p>The data and analyses presented here provide a comprehensive assessment of gene expression during metamorphosis in each sex, in both somatic and germline tissues. Many of the genes that underlie critical developmental processes during metamorphosis, including sex-specific processes, have been identified. These results provide a framework for further functional studies on the regulation of sex-specific development.</p

    Taking ethanol quality beyond fuel grade: A review

    Get PDF
    Ethanol production in the United States approached 15 billion gal/year in 2015. Only about 2.5% of this was food‐grade alcohol, but this represents a higher‐value product than fuels or other uses. The ethanol production process includes corn milling, cooking, saccharification, fermentation, and separation by distillation. Volatile byproducts are produced during the fermentation of starch. These include other alcohols, aldehydes, ketones, fatty acids and esters. Food‐grade ethanol is generally produced by wet milling, where starch and sugars are separated from the other corn components, resulting in much smaller concentrations of the impurities than are obtained from fermentation of dry‐milled corn, where cyclic and heterocyclic compounds are produced from lignin in the corn hull. Some of these volatile byproducts are likely to show up in the distillate and these fermentation byproducts in ethanol could cause unpleasant flavours and affect human health if used for human consumption. There is some interest in improving ethanol quality, since human consumption represents a higher value. Advanced purification techniques, such as ozone oxidation, currently used for drinking water and municipal wastewater treatment, offer possibilities for adaptation in ethanol quality improvement. The development of analytical techniques has enabled the detection of low‐concentration compounds and simple quality assurance of food‐grade alcohol. This review includes the most recent ethanol production methods, potential ethanol purification techniques and analytical techniques. Application of such techniques would aid in the development of simplified alcohol production

    Comparison of the Ventricle Muscle Proteome between Patients with Rheumatic Heart Disease and Controls with Mitral Valve Prolapse: HSP 60 May Be a Specific Protein in RHD

    No full text
    Objective. Rheumatic heart disease (RHD) is a serious autoimmune heart disease. The present study was aimed at identifying the differentially expressed proteins between patients with RHD and controls with mitral valve prolapse. Methods. Nine patients with RHD and nine controls with mitral valve prolapsed were enrolled for this study. Two-dimensional difference in-gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were performed. Results. A total of 39 protein spots with differential expressions were identified between the two groups (P<0.05, Average Ratio > 1.2 or Average Ratio < −1.2) and four upregulated proteins (including heat shock protein 60 (HSP 60), desmin, PDZ and LIM domain protein 1, and proteasome subunit alpha type-1) and three downregulated proteins (including tropomyosin alpha-1 chain, malate dehydrogenase, and chaperone activity of bc1 complex homolog) were determined. Conclusion. These seven proteins, especially HSP 60, may serve as potential biomarkers for the diagnosis of RHD and provide evidence to explain the mechanisms of this complex disease in the future

    MicroRNA-9 Enhanced Cisplatin Sensitivity in Nonsmall Cell Lung Cancer Cells by Regulating Eukaryotic Translation Initiation Factor 5A2

    No full text
    We determined the role of microRNA (miR)-9 in regulating cisplatin chemoresistance in nonsmall cell lung cancer (NSCLC) cells. miR-9 and eukaryotic translation initiation factor 5A2 (eIF5A2) levels were examined by reverse transcription–quantitative PCR. Cell Counting Kit-8 and the 5-ethynyl-2â€Č-deoxyuridine (EdU) assay were used to determine the effects of miR-9 mimic or inhibitor on NSCLC cell proliferation and viability, respectively. Bioinformatics was used to analyze the relationship between miR-9 and eIF5A2. Flow cytometry was used to analyze the percentage of apoptotic cells. miR-9 mimic enhanced cisplatin sensitivity, while miR-9 inhibitor produced the opposite result. eIF5A2 was identified as a potential target of miR-9, where miR-9 regulated eIF5A2 expression at mRNA and protein level. miR-9 mimic decreased the expression of eIF5A2 mRNA and protein, while miR-9 inhibitor increased eIF5A2 expression. eIF5A2 knockdown resolved the effects of miR-9 mimic or inhibitor on cisplatin sensitivity. miR-9 may be a potential biomarker for enhancing cisplatin sensitivity by regulating eIF5A2 in NSCLC cells

    Detection of Differentially Expressed MicroRNAs in Rheumatic Heart Disease: miR-1183 and miR-1299 as Potential Diagnostic Biomarkers

    No full text
    This study compared microRNA (miRNA) expression profiles between rheumatic heart disease (RHD) patients and healthy controls to investigate their differential expression and help elucidate their mechanisms of action. Microarray analysis was used to measure miRNA expression, and a total of 133 miRNAs were shown to be significantly upregulated in RHD patients compared with controls, including miR-1183 and miR-1299. A total of 137 miRNAs, including miR-4423-3p and miR-218-1-3p, were significantly downregulated in RHD patients. Quantitative real-time-PCR confirmed microarray findings for miR-1183 and miR-1299 in both tissue and plasma. Bioinformatic predictions were also made of differentially expressed miRNAs as biomarkers in RHD by databases and GO/pathway analysis. Furthermore, we investigated miR-1183 and miR-1299 expression in RHD patients with secondary pulmonary hypertension (PAH). Our findings identified an important role for miR-1299 as a direct regulator of RHD, while the observed difference in expression of miR-1183 between RHD-PAH patients with high or low pulmonary artery pressure suggests that miR-1183 overexpression may reflect pulmonary artery remodeling. miR-1183 and miR-1299 appear to play distinct roles in RHD pathogenesis accompanied by secondary PAH and could be used as potential biological markers for disease development

    GCK gene-body hypomethylation is associated with the risk of coronary heart disease. Biomed Res Int

    No full text
    Objectives. Glucokinase encoded by GCK is a key enzyme that facilitates phosphorylation of glucose to glucose-6-phosphate. Variants of GCK gene were shown to be associated with type 2 diabetes (T2D) and coronary heart disease (CHD). The goal of this study was to investigate the contribution of GCK gene-body methylation to the risk of CHD. Design and Methods. 36 patients (18 males and 18 females) and 36 age-and sex-matched controls were collected for the current methylation research. DNA methylation level of the CpG island (CGI) region on the GCK gene-body was measured through the sodium bisulfite DNA conversion and pyrosequencing technology. Results. Our results indicated that CHD cases have a much lower methylation level (49.77 ± 6.43%) compared with controls (54.47 ± 7.65%, = 0.018). In addition, GCK gene-body methylation was found to be positively associated with aging in controls ( = 0.443, = 0.010). Conclusions. Our study indicated that the hypomethylation of GCK gene-body was significantly associated with the risk of CHD. Aging correlates with an elevation of GCK methylation in healthy controls

    GCK Gene-Body Hypomethylation Is Associated with the Risk of Coronary Heart Disease

    No full text
    Objectives. Glucokinase encoded by GCK is a key enzyme that facilitates phosphorylation of glucose to glucose-6-phosphate. Variants of GCK gene were shown to be associated with type 2 diabetes (T2D) and coronary heart disease (CHD). The goal of this study was to investigate the contribution of GCK gene-body methylation to the risk of CHD. Design and Methods. 36 patients (18 males and 18 females) and 36 age- and sex-matched controls were collected for the current methylation research. DNA methylation level of the CpG island (CGI) region on the GCK gene-body was measured through the sodium bisulfite DNA conversion and pyrosequencing technology. Results. Our results indicated that CHD cases have a much lower methylation level (49.77 ± 6.43%) compared with controls (54.47 ± 7.65%, P=0.018). In addition, GCK gene-body methylation was found to be positively associated with aging in controls (r=0.443, P=0.010). Conclusions. Our study indicated that the hypomethylation of GCK gene-body was significantly associated with the risk of CHD. Aging correlates with an elevation of GCK methylation in healthy controls
    corecore