25 research outputs found

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Amélioration de la qualité des carcasses et des viandes

    No full text
    4 tables 5 graph.International audienc

    Amélioration de la qualité des carcasses et des viandes

    No full text
    National audienc

    Initial results from a hydroacoustic network to monitor submarine lava flows nearMayotte Island

    No full text
    In 2019, a new underwater volcano was discovered at 3500 m below sea level (b.s.l.), 50 km east ofMayotte Island in the northern part of theMozambique Channel. In January 2021, the submarine eruption was still going on and the volcanic activity, along with the intense seismicity that accompanies this crisis, was monitored by the recently created REVOSIMA (MAyotte VOlcano and Seismic Monitoring) network. In this framework, four hydrophones were moored in the SOFAR channel in October 2020. Surrounding the volcano, they monitor sounds generated by the volcanic activity and the lava flows. The first year of hydroacoustic data evidenced many earthquakes, underwater landslides, large marine mammal calls, along with anthropogenic noise. Of particular interest are impulsive signals that we relate to steam bursts during lava flow emplacement. A preliminary analysis of these impulsive signals (ten days in a year, and only one day in full detail) reveals that lava emplacementwas active when our monitoring started, but faded out during the first year of the experiment. A systematic and robust detection of these specific signalswould hence contribute to monitor active submarine eruptions in the absence of seafloor deep-towimaging or swath-bathymetry surveys of the active area.En 2019, un nouveau volcan sous-marin a été découvert par 3500 m de profondeur, à 50 km à l’est de l’île de Mayotte dans la partie Nord du Canal du Mozambique. Le RÉseau de surveillance VOlcanologique et SIsmologique de MAyotte (REVOSIMA) a été mis en place pour surveiller l’activité sous-marine de ce nouveau volcan ainsi que l’intense crise sismique qui a débuté en Mai 2018 et qui est toujours en cours. Dans ce cadre, quatre mouillages équipés d’hydrophones ont été déployés en octobre 2020 autour du volcan, à la profondeur du canal SOFAR. L’objectif est, entre autres, d’enregistrer les sons générés par l’activité volcanique sous-marine, notamment par l’éruption de coulées de lave. Plusieurs sources d’ondes hydroacoustiques ont été identifiées pendant la première année d’écoute : séismes, glissements de terrain sous-marins, cris de mammifères marins de différentes espèces et bruit anthropogénique. Parmi ces sons, des signaux impulsionnels ont retenu notre attention. Nous les associons à des formations de vapeur liées à l’épanchement de coulées volcaniques. L’analyse préliminaire de ces signaux (10 jours répartis sur la première année, dont 24 h dépouillées finement) révèle que la forte activité éruptive observée à 10 km au NW du nouveau volcan au début de la surveillance hydroacoustique a fortement diminué pendant la première année d’enregistrement. Une détection systématique robuste de ces signaux offrirait la possibilité de dater et localiser l’activité éruptive, en l’absence de levés bathymétriques et d’imagerie répétée de la zone active

    Insight into the Influence of Cultivar Type, Cultivation Year, and Site on the Lignans and Related Phenolic Profiles, and the Health-Promoting Antioxidant Potential of Flax (Linum usitatissimum L.) Seeds

    No full text
    Flaxseeds are a functional food representing, by far, the richest natural grain source of lignans, and accumulate substantial amounts of other health beneficial phenolic compounds (i.e., flavonols, hydroxycinnamic acids). This specific accumulation pattern is related to their numerous beneficial effects on human health. However, to date, little data is available concerning the relative impact of genetic and geographic parameters on the phytochemical yield and composition. Here, the major influence of the cultivar over geographic parameters on the flaxseed phytochemical accumulation yield and composition is evidenced. The importance of genetic parameters on the lignan accumulation was further confirmed by gene expression analysis monitored by RT-qPCR. The corresponding antioxidant activity of these flaxseed extracts was evaluated, both in vitro, using ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and iron chelating assays, as well as in vivo, by monitoring the impact of UV-induced oxidative stress on the lipid membrane peroxidation of yeast cells. Our results, both the in vitro and in vivo studies, confirm that flaxseed extracts are an effective protector against oxidative stress. The results point out that secoisolariciresinol diglucoside, caffeic acid glucoside, and p-coumaric acid glucoside are the main contributors to the antioxidant capacity. Considering the health benefits of these compounds, the present study demonstrates that the flaxseed cultivar type could greatly influence the phytochemical intakes and, therefore, the associated biological activities. We recommend that this crucial parameter be considered in epidemiological studies dealing with flaxseeds

    Volcano-tectonic structures of Mayotte’s upper submarine slope: insights from high-resolution bathymetry and in-situ imagery from a deep-towed camera

    Get PDF
    Unlike subaerial volcanic activity, deep submarine eruptions are difficult to detect, observe and monitor. The objective of this paper is to describe a large and complex volcanic region, named the Horseshoe area, recently discovered at 1500 m below sea level on the eastern upper submarine slope of Mayotte Island. The area is crucial because, since 2018, it has experienced an exceptionally deep seismic activity associated with the ongoing submarine eruption that formed a new volcanic edifice, Fani Maoré, about 40 km to the east. We present the results of a multiscale study, based on high-resolution bathymetry and in-situ seafloor observations carried out with autonomous underwater vehicles (AUVs) and deep-towed camera systems. In-situ imagery provides ground-truth for the geological interpretation of seafloor textures mapped with the bathymetry. The combination of both datasets allows us to discuss the nature of the volcanic structures and to propose a relative chronology of previous eruptive events in the Horseshoe area. Based on our analyses, we propose the following chronology: (a) the emplacement of a large explosive volcanic cone, the Horseshoe edifice, (b) the later collapse of this edifice that resulted in the formation of an elongated, 2 km wide horseshoe-shaped depression, crosscutting older hummocky lava flows, (c) the development of an E–W eruptive fissure associated with numerous explosive craters, east of the Horseshoe edifice, and (d) late volcanism emanating from the rim of the horseshoe-shaped depression that fed elongated thin lava flows both towards and away from the depression. While all volcanic features mapped at the Horseshoe area were emplaced prior to the 2018 eruption, our study shows that this region has still been volcanically active in the recent past. Our results thus document a complex geological history at small spatial scales involved in the construction of major submarine edifices, and that are controlled by volcano-tectonic processes at larger scales
    corecore