555 research outputs found

    Laser-directed hierarchical assembly of liquid crystal defects and control of optical phase singularities

    Get PDF
    Topological defect lines are ubiquitous and important in a wide variety of fascinating phenomena and theories in many fields ranging from materials science to early-universe cosmology, and to engineering of laser beams. However, they are typically hard to control in a reliable manner. Here we describe facile erasable “optical drawing” of self-assembled defect clusters in liquid crystals. These quadrupolar defect clusters, stabilized by the medium's chirality and the tendency to form twisted configurations, are shaped into arbitrary two-dimensional patterns, including reconfigurable phase gratings capable of generating and controlling optical phase singularities in laser beams. Our findings bridge the studies of defects in condensed matter physics and optics and may enable applications in data storage, singular optics, displays, electro-optic devices, diffraction gratings, as well as in both optically- and electrically-addressed pixel-free spatial light modulators

    Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer

    Get PDF
    INTRODUCTION Breast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice. METHODS More than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer 'stem' cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account. RESULTS The 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working. CONCLUSIONS With resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years

    Evaluation of two formulations of adjuvanted RTS, S malaria vaccine in children aged 3 to 5 years living in a malaria-endemic region of Mozambique: a Phase I/IIb randomized double-blind bridging trial

    Get PDF
    BACKGROUND: Previous trials of the RTS, S malaria candidate vaccine have shown that this vaccine is safe, tolerated and immunogenic. The development plan for this vaccine aims at administering it in the first year of life through the Expanded Program on Immunization (EPI). The objective was to evaluate the safety and reactogenicity of RTS, S/AS02D (0.5 ml dose), a pediatric formulation of GlaxoSmithKline Biologicals' current malaria candidate vaccine RTS, S/AS02A (0.25 ml dose). A 0.5 ml dose of AS02D is composed of the same active ingredients in the same quantities as in a 0.25 ml dose of AS02A and has been developed to be easily introduced into routine EPI practices. METHODS: We performed a phase I/IIb randomized double-blind bridging study in a malaria-endemic region of Mozambique, to compare the safety and immunogenicity of both candidate vaccines with the aim of replacing RTS, S/AS02A with RTS, S/AS02D as the candidate pediatric vaccine. 200 Mozambican children aged 3 to 5 years were randomized 1:1 to receive one of the 2 vaccines according to a 0, 1, 2 month schedule. RESULTS: Both vaccines were safe and had similar reactogenicity profiles. All subjects with paired pre and post-vaccination samples showed a vaccine response with respect to anti-circumsporozoite (CS) antibodies irrespective of initial anti-CS serostatus. Geometric mean titers (GMTs) were 191 EU/ml (95% CI 150–242) in recipients of RTS, S/AS02D compared to 180 EU/ml (95% CI 146–221) in recipients of RTS, S/AS02A. For the anti-hepatitis B surface antigen (HBsAg), all subjects were seroprotected at day 90, and the GMTs were 23978 mIU/ml (95% CI 17896–32127) in RTS, S/AS02D recipients and 17410 mIU/ml (95% CI 13322–22752) in RTS, S/AS02A recipients. There was a decrease in anti-CS GMTs between months 3 and 14 in both groups (191 vs 22 EU/mL in RTS, S/AS02D group and 180 vs 29 EU/mL in RTS, S/AS02A group). CONCLUSION: Our data show that the RTS, S/AS02D is safe, well tolerated, and demonstrates non-inferiority (defined as upper limit of the 95% confidence interval of the anti-CS GMT ratio of RTS, S/AS02A to RTS, S/AS02D below 3.0) of the antibody responses to circumsporozoite and HBsAg induced by the RTS, S/AS02D as compared to the RTS, S/AS02A

    Quantitative Trait Loci Associated with the Immune Response to a Bovine Respiratory Syncytial Virus Vaccine

    Get PDF
    Infectious disease is an important problem for animal breeders, farmers and governments worldwide. One approach to reducing disease is to breed for resistance. This linkage study used a Charolais-Holstein F2 cattle cross population (n = 501) which was genotyped for 165 microsatellite markers (covering all autosomes) to search for associations with phenotypes for Bovine Respiratory Syncytial Virus (BRSV) specific total-IgG, IgG1 and IgG2 concentrations at several time-points pre- and post-BRSV vaccination. Regions of the bovine genome which influenced the immune response induced by BRSV vaccination were identified, as well as regions associated with the clearance of maternally derived BRSV specific antibodies. Significant positive correlations were detected within traits across time, with negative correlations between the pre- and post-vaccination time points. The whole genome scan identified 27 Quantitative Trait Loci (QTL) on 13 autosomes. Many QTL were associated with the Thymus Helper 1 linked IgG2 response, especially at week 2 following vaccination. However the most significant QTL, which reached 5% genome-wide significance, was on BTA 17 for IgG1, also 2 weeks following vaccination. All animals had declining maternally derived BRSV specific antibodies prior to vaccination and the levels of BRSV specific antibody prior to vaccination were found to be under polygenic control with several QTL detected

    Correlates of physical activity among community-dwelling adults aged 50 or over in six low- and middle-income countries

    Get PDF
    Background: Considering that physical activity is associated with healthy ageing and helps to delay, prevent, or manage a plethora of non-communicable diseases in older adults, there is a need to investigate the factors that influence physical activity participation in this population. Thus, we investigated physical activity correlates among community-dwelling older adults (aged ≥50 years) in six low- and middle-income countries. Methods: Cross-sectional data were analyzed from the World Health Organization’s Study on Global Ageing and Adult Health. Physical activity was assessed by the Global Physical Activity Questionnaire. Participants were dichotomized into low (i.e., not meeting 150 minutes of moderate physical activity per week) and moderate-to-high physically active groups. Associations between physical activity and a range of correlates were examined using multivariable logistic regressions. Results: The overall prevalence (95%CI) of people not meeting recommended physical activity levels in 34,129 participants (mean age 62.4 years, 52.1% female) was 23.5% (22.3%-24.8%). In the multivariable analysis, older age and unemployment were significant sociodemographic correlates of low physical activity. Individuals with low body mass index (<18.5kg/m2), bodily pain, asthma, chronic back pain, chronic obstructive pulmonary disease, hearing problems, stroke, visual impairment, slow gait, and weak grip strength were less likely to meet physical activity targets in the overall sample (P<0.05). The associations varied widely between countries. Conclusion: Our data illustrates that a multitude of factors influence physical activity target achievement in older adults, which can inform future interventions across low- and middle-income countries to assist people of this age group to engage in regular physical activity. Future prospective cohort studies are also required to investigate the directionality and mediators of the relationships observed

    Recent advances in structure and function of cytosolic IMP-GMP specific 5′nucleotidase II (cN-II)

    Get PDF
    Cytosolic 5′nucleotidase II (cN-II) catalyses both the hydrolysis of a number of nucleoside monophosphates (e.g., IMP + H2O→inosine + Pi), and the phosphate transfer from a nucleoside monophosphate donor to the 5′position of a nucleoside acceptor (e.g., IMP + guanosine →inosine + GMP). The enzyme protein functions through the formation of a covalent phosphoenzyme intermediate, followed by the phosphate transfer either to water (phosphatase activity) or to a nucleoside (phosphotransferase activity). It has been proposed that cN-II regulates the intracellular concentration of IMP and GMP and the production of uric acid. The enzyme might also have a potential therapeutic importance, since it can phosphorylate some anti-tumoral and antiviral nucleoside analogues that are not substrates of known kinases. In this review we summarise our recent studies on the structure, regulation and function of cN-II. Via a site-directed mutagenesis approach, we have identified the amino acids involved in the catalytic mechanism and proposed a structural model of the active site. A series of in vitro studies suggests that cN-II might contribute to the regulation of 5-phosphoribosyl-1-pyrophosphate (PRPP) level, through the so-called oxypurine cycle, and in the production of intracellular adenosine, formed by ATP degradation

    Three-dimensional mapping of mechanical activation patterns, contractile dyssynchrony and dyscoordination by two-dimensional strain echocardiography: Rationale and design of a novel software toolbox

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dyssynchrony of myocardial deformation is usually described in terms of variability only (e.g. standard deviations SD's). A description in terms of the spatio-temporal distribution pattern (vector-analysis) of dyssynchrony or by indices estimating its impact by expressing dyscoordination of shortening in relation to the global ventricular shortening may be preferential. Strain echocardiography by speckle tracking is a new non-invasive, albeit 2-D imaging modality to study myocardial deformation.</p> <p>Methods</p> <p>A post-processing toolbox was designed to incorporate local, speckle tracking-derived deformation data into a 36 segment 3-D model of the left ventricle. Global left ventricular shortening, standard deviations and vectors of timing of shortening were calculated. The impact of dyssynchrony was estimated by comparing the end-systolic values with either early peak values only (early shortening reserve ESR) or with all peak values (virtual shortening reserve VSR), and by the internal strain fraction (ISF) expressing dyscoordination as the fraction of deformation lost internally due to simultaneous shortening and stretching. These dyssynchrony parameters were compared in 8 volunteers (NL), 8 patients with Wolff-Parkinson-White syndrome (WPW), and 7 patients before (LBBB) and after cardiac resynchronization therapy (CRT).</p> <p>Results</p> <p>Dyssynchrony indices merely based on variability failed to detect differences between WPW and NL and failed to demonstrate the effect of CRT. Only the 3-D vector of onset of shortening could distinguish WPW from NL, while at peak shortening and by VSR, ESR and ISF no differences were found. All tested dyssynchrony parameters yielded higher values in LBBB compared to both NL and WPW. CRT reduced the spatial divergence of shortening (both vector magnitude and direction), and improved global ventricular shortening along with reductions in ESR and dyscoordination of shortening expressed by ISF.</p> <p>Conclusion</p> <p>Incorporation of local 2-D echocardiographic deformation data into a 3-D model by dedicated software allows a comprehensive analysis of spatio-temporal distribution patterns of myocardial dyssynchrony, of the global left ventricular deformation and of newer indices that may better reflect myocardial dyscoordination and/or impaired ventricular contractile efficiency. The potential value of such an analysis is highlighted in two dyssynchronous pathologies that impose particular challenges to deformation imaging.</p
    corecore