27 research outputs found

    Metal mixture modeling evaluation project: 2. Comparison of four modeling approaches

    Get PDF
    As part of the Metal Mixture Modeling Evaluation (MMME) project, models were developed by the National Institute of Advanced Industrial Science and Technology (Japan), the US Geological Survey (USA), HDR|HydroQual (USA), and the Centre for Ecology and Hydrology (United Kingdom) to address the effects of metal mixtures on biological responses of aquatic organisms. A comparison of the 4 models, as they were presented at the MMME workshop in Brussels, Belgium (May 2012), is provided in the present study. Overall, the models were found to be similar in structure (free ion activities computed by the Windermere humic aqueous model [WHAM]; specific or nonspecific binding of metals/cations in or on the organism; specification of metal potency factors or toxicity response functions to relate metal accumulation to biological response). Major differences in modeling approaches are attributed to various modeling assumptions (e.g., single vs multiple types of binding sites on the organism) and specific calibration strategies that affected the selection of model parameters. The models provided a reasonable description of additive (or nearly additive) toxicity for a number of individual toxicity test results. Less-than-additive toxicity was more difficult to describe with the available models. Because of limitations in the available datasets and the strong interrelationships among the model parameters (binding constants, potency factors, toxicity response parameters), further evaluation of specific model assumptions and calibration strategies is needed

    Parasite responses to pollution: what we know and where we go in ‘Environmental Parasitology’

    Full text link

    Association between Hemagglutinin Stem-Reactive Antibodies and Influenza A/H1N1 Virus Infection during the 2009 Pandemic

    Get PDF
    UNLABELLED: The discovery of influenza virus broadly neutralizing (BrN) antibodies prompted efforts to develop universal vaccines. Influenza virus stem-reactive (SR) broadly neutralizing antibodies have been detected by screening antibody phage display libraries. However, studies of SR BrN antibodies in human serum, and their association with natural infection, are limited. To address this, pre- and postpandemic sera from a prospective community cohort study in Vietnam were assessed for antibodies that inhibit SR BrN monoclonal antibody (MAb) (C179) binding to H1N1 pandemic 2009 virus (H1N1pdm09). Of 270 households, 33 with at least one confirmed H1N1pdm09 illness or at least two seroconverters were included. The included households comprised 71 infected and 41 noninfected participants. Sera were tested as 2-fold dilutions between 1:5 and 1:40. Fifty percent C179 inhibition (IC50) titers did not exceed 10, although both IC50 titers and percent C179 inhibition by sera diluted 1:5 or 1:10 correlated with hemagglutination inhibition (HI) and microneutralization (MN) titers (all P < 0.001). Thirteen (12%) participants had detectable prepandemic IC50 titers, but only one reached a titer of 10. This proportion increased to 44% after the pandemic, when 39 participants had a titer of 10, and 67% of infected compared to 44% of noninfected had detectable IC50 titers (P < 0.001). The low levels of SR antibodies in prepandemic sera were not associated with subsequent H1N1pdm09 infection (P = 0.241), and the higher levels induced by H1N1pdm09 infection returned to prepandemic levels within 2 years. The findings indicate that natural infection induces only low titers of SR antibodies that are not sustained. IMPORTANCE: Universal influenza vaccines could have substantial health and economic benefits. The focus of universal vaccine research has been to induce antibodies that prevent infection by diverse influenza virus strains. These so-called broadly neutralizing antibodies are readily detected in mice and ferrets after infection with a series of distinct influenza virus strains. The 2009 H1N1 pandemic provided an opportunity to investigate whether infection with a novel strain induced broadly neutralizing antibodies in humans. We found that broadly neutralizing antibodies were induced, but levels were low and poorly maintained. This could represent an obstacle for universal vaccine development and warrants further investigation

    Hemagglutination inhibiting antibodies and protection against seasonal and pandemic influenza infection

    Get PDF
    OBJECTIVES: Hemagglutination inhibiting (HI) antibodies correlate with influenza vaccine protection but their association with protection induced by natural infection has received less attention and was studied here. METHODS: 940 people from 270 unvaccinated households participated in active ILI surveillance spanning 3 influenza seasons. At least 494 provided paired blood samples spanning each season. Influenza infection was confirmed by RT-PCR on nose/throat swabs or serum HI assay conversion. RESULTS: Pre-season homologous HI titer was associated with a significantly reduced risk of infection for H3N2 (OR 0.61, 95%CI 0.44-0.84) and B (0.65, 95%CI 0.54-0.80) strains, but not H1N1 strains, whether re-circulated (OR 0.90, 95%CI 0.71-1.15), new seasonal (OR 0.86, 95%CI 0.54-1.36) or pandemic H1N1-2009 (OR 0.77, 95%CI 0.40-1.49). The risk of seasonal and pandemic H1N1 decreased with increasing age (both p < 0.0001), and the risk of pandemic H1N1 decreased with prior seasonal H1N1 (OR 0.23, 95%CI 0.08-0.62) without inducing measurable A/California/04/2009-like titers. CONCLUSIONS: While H1N1 immunity was apparent with increasing age and prior infection, the effect of pre-season HI titer was at best small, and weak for H1N1 compared to H3N2 and B. Antibodies targeting non-HI epitopes may have been more important mediators of infection-neutralizing immunity for H1N1 compared to other subtypes in this setting

    Pandemic H1N1 virus transmission and shedding dynamics in index case households of a prospective Vietnamese cohort

    Get PDF
    OBJECTIVES: Influenza household transmission studies are required to guide prevention strategies but most passively recruit index cases that seek healthcare. We investigated A(H1N1)pdm09 transmission in a household-based cohort during 2009. METHODS: Health-workers visited 270 households weekly, and collected swabs from influenza-like-illness cases. If A(H1N1)pdm09 was RT-PCR-confirmed, all household members had symptoms assessed and swabs collected daily for 10-15 days. Viral RNA was quantified and sequenced and serology performed on pre-pandemic sera. RESULTS: Index cases were detected in 20 households containing 81 people. 98.5% lacked A(H1N1)pdm09 neutralizing antibodies in pre-pandemic sera. Eleven (18.6%, 95% CI 10.7-30.4%) of 59 contacts were infected. Virus genetic diversity within households was negligible and less than between households. Index and secondary cases were distributed between mothers, daughters and sons, and had similar virus-RNA shedding and symptom dynamics. Fathers were rarely infected. Five secondary cases (45%) had no apparent symptoms and three shed virus before symptoms. Secondary infection was associated with index case wet cough (OR 1.56, 95% CI 1.22-1.99). CONCLUSIONS: In this cohort of A(H1N1)pdm09 susceptible persons, virus sequencing was capable of discriminating household from community transmission. Household transmission involved mothers and children but rarely fathers. Asymptomatic or pre-symptomatic shedding was common
    corecore