402 research outputs found

    A Resection Method Applied To Infrared Measurements

    Get PDF
    Abstract Heat flux measurements are one of the main purposes of tests carried out in hypersonic wind tunnels. They are performed at Onera mainly with Infrared Thermography (IRT), while sensors as thermocouples enable to check its reliability. Image processing tools are used to recognize the model position in images and to extract information from them. Methods doing these actions are called resection methods. The Onera's method requires markers, which are recognized automatically. The relative position of the camera is identified and the model motion can then be corrected in a 3D manner. The resection method is now widely applied for wind tunnel testing both for infrared or visible applications

    Direct Experimental Evidence for Differing Reactivity Alterations of Minerals following Irradiation: The Case of Calcite and Quartz

    Get PDF
    Concrete, a mixture formed by mixing cement, water, and fine and coarse mineral aggregates is used in the construction of nuclear power plants (NPPs), e.g., to construct the reactor cavity concrete that encases the reactor pressure vessel, etc. In such environments, concrete may be exposed to radiation (e.g., neutrons) emanating from the reactor core. Until recently, concrete has been assumed relatively immune to radiation exposure. Direct evidence acquired on Ar+^+-ion irradiated calcite and quartz indicates, on the contrary, that, such minerals, which constitute aggregates in concrete, may be significantly altered by irradiation. Specifically, while quartz undergoes disordering of its atomic structure resulting in a near complete lack of periodicity, i.e., similar to glassy silica, calcite only experiences random rotations, and distortions of its carbonate groups. As a result, irradiated quartz shows a reduction in density of around 15%, and an increase in chemical reactivity, described by its dissolution rate, similar to a glassy silica; i.e., an increase of around 3 orders of magnitude. Calcite however, shows little change in dissolution rates - although its density noted to reduce by around 9%. These differences are correlated with the nature of bonds in these minerals, i.e., being dominantly ionic or covalent, and the rigidity of the mineral's atomic network that is characterized by the number of topological constraints (nc_c) that are imposed on the atoms in the network. The outcomes are discussed within the context of the durability of concrete structural elements formed with calcitic/quartzitic aggregates in nuclear power plants

    A Dissolution-Precipitation Mechanism is at the Origin of Concrete Creep in Moist Environments

    Get PDF
    Long-term creep (i.e., deformation under sustained load) is a significant material response that needs to be accounted for in concrete structural design. However, the nature and origin of concrete creep remain poorly understood and controversial. Here, we propose that concrete creep at relative humidity ≥ 50%, but fixed moisture content (i.e., basic creep), arises from a dissolution-precipitation mechanism, active at nanoscale grain contacts, as has been extensively observed in a geological context, e.g., when rocks are exposed to sustained loads, in liquid-bearing environments. Based on micro-indentation and vertical scanning interferometry data and molecular dynamics simulations carried out on calcium-silicate-hydrate (C-S-H), the major binding phase in concrete, of different compositions, we show that creep rates are correlated with dissolution rates - an observation which suggests a dissolution-precipitation mechanism as being at the origin of concrete creep. C-S-H compositions featuring high resistance to dissolution, and, hence, creep are identified. Analyses of the atomic networks of such C-S-H compositions using topological constraint theory indicate that these compositions present limited relaxation modes on account of their optimally connected (i.e., constrained) atomic networks

    Restrained shrinkage cracking of cementitious composites containing soft PCM inclusions: A paste (matrix) controlled response

    Get PDF
    The addition of phase change materials (PCMs) has been proposed as a means to mitigate thermal cracking in cementitious materials. However, the addition of PCMs, i.e., soft inclusions, degrades the compressive strength of cementitious composites. From a strength-of-materials viewpoint, such reductions in strength are suspected to increase the tendency of cementitious materials containing PCMs to crack under load (e.g., volume instability-induced stresses resulting from thermal and/or hygral deformations). Based on detailed assessments of free and restrained shrinkage, elastic modulus, and tensile strength, this study shows that the addition of PCMs does not alter the cracking sensitivity of the material. In fact, the addition of PCMs (or other soft inclusions) enhances the cracking resistance as compared to a plain cement paste or composites containing equivalent dosages of (stiff) quartz inclusions. This is because composites containing soft inclusions demonstrate benefits resulting from crack blunting and deflection, and improved stress relaxation. As a result, although the tensile stress at failure remains similar, the time to failure (i.e., macroscopic cracking) of PCM-containing composites is considerably extended. More generally, the outcomes indicate that dosages of soft(er) inclusions, and the resulting decrease in compressive strength does not amplify the cracking risk of cementitious composites

    Synthesis and characterisation of pyrene-labelled polydimethylsiloxane networks: towards the in situ detection of strain in silicone elastomers

    Get PDF
    Pyrene-substituted polyhydromethylsiloxanes (PHMS-Py-x) were synthesised by the hydrosilylation reaction of prop-3-enyloxymethylpyrene with polyhydromethylsiloxane (M-n = 3700). The ratio of pyrene substituent to Si-H unit was varied to afford a range of pyrene-functionalised polysiloxanes. These copolymers were subsequently incorporated into polydimethylsiloxane (PDMS) elastomers by curing via either Pt(0) catalysed hydrosilylation with divinyl-terminated PDMS (M-n = 186) and tetrakis(dimethylsiloxy) silane, or Sn(II) catalysed condensation with alpha,omega-dihydroxyPDMS (M-n = 26 000) and tetraethoxysilane. An alternative method involving the synthesis and integration of [3-(pyren-1-ylmethoxy)propyl]triethoxysilane (Py-TEOS) into PDMS elastomers was also investigated: a mixture of alpha,omega-dihydroxyPDMS (M-n = 26 000), tetraethoxysilane, and Py-TEOS was cured using an Sn( II) catalyst. Certain of the resulting fluorescent pyrene-labelled elastomers were studied by differential scanning calorimetry and dynamic mechanical analysis. No significant changes were observed in the thermal or mechanical properties of the elastomers containing pyrene when compared to otherwise identical samples not containing pyrene. All of the pyrene-containing elastomers were demonstrated to be fluorescent under suitable excitation in a photoluminescent spectrometer. Two of the elastomers were placed in a photoluminescence spectrometer and subjected to cycles of extension and relaxation (strain = 0-16.7%) while changes in the emission spectra were monitored. The resulting spectra of the elastomer containing the PHMS-Py-50 copolymers were variable and inconsistent. However, the emission peaks of elastomers containing Py-TEOS displayed clear and reproducible changes in fluorescence intensity upon stretching and relaxation. The intensity of the monomer and excimer emission peaks was observed to increase with elongation of the sample and decrease upon relaxation. Furthermore, the ratio of the intensities of the excimer : monomer peak decreased with elongation and increased with relaxation. In neither case was there appreciable hysteresis, suggesting that fluorescent labelling of elastomers is a valid approach for the non-invasive in situ monitoring of stress and strain in such materials

    Does a dissolution-precipitation mechanism explain concrete creep in moist environments?

    Get PDF
    Long-term creep (i.e., deformation under sustained load) is a significant material response that needs to be accounted for in concrete structural design. However, the nature and origin of creep remains poorly understood, and controversial. Here, we propose that concrete creep at RH (relative humidity) > 50%, but fixed moisture-contents (i.e., basic creep), arises from a dissolution-precipitation mechanism, active at nanoscale grain contacts, as is often observed in a geological context, e.g., when rocks are exposed to sustained loads, in moist environments. Based on micro-indentation and vertical scanning interferometry experiments, and molecular dynamics simulations carried out on calcium-silicate-hydrates (C-S-H's), the major binding phase in concrete, of different compositions, we show that creep rates are well correlated to dissolution rates - an observation which supports the dissolution-precipitation mechanism as the origin of concrete creep. C-S-H compositions featuring high resistance to dissolution, and hence creep are identified - analysis of which, using topological constraint theory, indicates that these compositions present limited relaxation modes on account of their optimally connected (i.e., constrained) atomic networks

    RÔLE DE L'OCCUPATION DU SOL VIS À VIS DE LA MODÉLISATION DES FLUX ENERGÉTIQUES ET HYDRIQUES EN MILIEU URBAIN ET PÉRIURBAIN

    Get PDF
    National audienceLe projet Rosenhy vise à étudier l’impact de l’occupation du sol sur la modélisation météorologique et hydrologique en termes de flux énergétiques et hydriques, en milieu urbain et périurbain. Trois sites appartenant aux observatoires français OTHU et ONEVU sont au centre de ce projet. Le quartier urbain hétérogène du Pin sec (Nantes), imperméabilisé à environ 45%, a fait l’objet d’une campagne expérimentale durant le mois de juin 2012, visant à estimer les flux de chaleur sensible et latente avec une haute résolution spatiale et temporelle par rapport aux mesures réalisées en continu sur ce site depuis 5 ans. Deux bassins versant périurbains (La Chézine à Nantes et l’Yzeron à Lyon), avec un taux d’imperméabilisation moins important (environ 10%) mais grandissant depuis plusieurs décennies, sont aussi étudiés. Ces deux derniers sites bénéficient d’un suivi hydrométéorologique depuis 10 ans pour la Chézine et 15 ans pour l’Yzeron. Sur ces trois sites, différentes sources de données d’occupation du sol à différentes résolutions sont disponibles :différentes bases de données géographiques communément utilisées par la communauté scientifique et les collectivités et des données télédétectées (multispectrales et hyperspectrales). L’utilisation de ces données en entrée de différents modèles météorologiques et hydrologiques implique un travail d’analyse et de classification pour adapter les informations aux besoins des modèles. Dans ce projet, les différents modèles adaptés au milieu urbain ou périrubain sont évalués et améliorés. Ainsi, les modèles hydrologiques périrubains sont en développement pour prendre en compte les différentes pratiques de gestion des eaux pluviales existantes (noues, toitures végétalisées, ...). L’utilisation conjointe des données simulées par les différents modèles aidera à déterminer le rôle de la part des surfaces naturelles et artificielles sur les bilans énergétique et hydrique en milieu plus ou moins urbanisé. Le milieu périurbain étant en évolution, le projet s’intéressera aussi à des scénarios d’urbanisation prospectifs en regardant d’une part l’impact de la densification sur les scénarios construits pour l’Yzeron lors du projet AVuPUR (ANR-VMCS, 2008-2011) et d’autre part, en réfléchissant conjointement avec Nantes Métropole, aux possibles voies d’évolution sur le bassin de la Chézine

    Evolution of ZnS Nanoparticles via Facile CTAB Aqueous Micellar Solution Route: A Study on Controlling Parameters

    Get PDF
    Synthesis of semiconductor nanoparticles with new photophysical properties is an area of special interest. Here, we report synthesis of ZnS nanoparticles in aqueous micellar solution of Cetyltrimethylammonium bromide (CTAB). The size of ZnS nanodispersions in aqueous micellar solution has been calculated using UV-vis spectroscopy, XRD, SAXS, and TEM measurements. The nanoparticles are found to be polydispersed in the size range 6–15 nm. Surface passivation by surfactant molecules has been studied using FTIR and fluorescence spectroscopy. The nanoparticles have been better stabilized using CTAB concentration above 1 mM. Furthermore, room temperature absorption and fluorescence emission of powdered ZnS nanoparticles after redispersion in water have also been investigated and compared with that in aqueous micellar solution. Time-dependent absorption behavior reveals that the formation of ZnS nanoparticles depends on CTAB concentration and was complete within 25 min
    • …
    corecore