872 research outputs found

    Exploring the origin of ice-filled craters in the north polar region of Mars

    Get PDF
    We investigate the origins of enigmatic ice-filled craters in the north polar region of Mars. We test several explanations for their origin, namely: (1) as polar cap remnants (2) accumulation independently of the polar cap, and (3) upwelling of subsurface water, analogous to either aufice or pingo formation on Earth. Each of these hypotheses has a significant impact on our understanding of Mars’ recent geological and climatic history and the behaviour of water and water ice at high latitudes. We used several lines of evidence to assess the most likely formation mechanism. We first performed a crater survey based on THEMIS visual data and MOLA elevation data to identify any craters that had domal central lumps which were different from normal central peaks. From this survey we identified 17 craters for further study. These include Louth, Korolev, Dokka and other unnamed craters. Using data from orbiting spectrometers; OMEGA on ESA’s Mars Express and CRISM on NASA’s Mars Reconnaissance Orbiter; we verified that the composition of the exposed central domes was predominantly water ice. We found the domes fell into three groups: (1) those completely covered by dunes, (2) those partially covered by dunes and (3) those with no dunes. We investigated the morphology and the relative position of the domes using MOLA elevation data. We found that the domes are always asymmetrically placed within the craters. However, this asymmetry could not easily be linked to wind directions as revealed by dune slip-faces [2]. The domes often have a moat-like structure and in some cases do not cover the entire crater floor, e.g. Louth Crater. From image data, we identified six craters which possessed internal stratigraphy, in the form of regularly spaced layers, and of these we have inspected three in detail. We found that the layers possess both strong sinuosity and high angle unconformities. We interpret the internal stratigraphy as representing a sequence of regular cyclic accumulations, which produced the layers, followed by asymmetric ablation and subsequent resumption of accumulation, to produce the unconformities. Hence, the present-day shape of the domes indicates that they are in a phase of ablation.We attribute the colour contrasts between layers to different levels of dust, or particulate content. This could form a source for the dunes, which are often located on the summits of these domes. We find that this sequence is best explained by a model of atmospheric condensation. Our measurements of internal layer spacing and observations of layer stratigraphy argues that these deposits are not linked directly to a former, more extensive polar cap

    Dissolution on Saturn's Moon Titan: A 3D Karst Landscape Evolution Model

    Get PDF
    Titan is an Earth-like world possessing a nitrogen-rich atmosphere covering a surface showing signs of lacustrine (lakes and depressions), fluvial (channels, valleys), aeolian (longitudinal dunes) activity. The chemistry implied in the geological processes is, however, strikingly different from that on Earth. Titan’s extremely cold environment (T ~ -180°C) only allows water to exist under the form of an icy “bedrock”. The presence of methane as the second major constituent in the atmosphere, as well as an active nitrogen-methane photochemistry, allows methane and ethane to drive a hydrocarbon cycle similar to the terrestrial hydrological cycle. A plethora of organic solids, more or less soluble in liquid hydrocarbons, is also produced in the atmosphere and can lead, by atmospheric sedimentation over geological timescales, to formation of some kind of organic geological sedimentary layer. [figure_sikun2other] Based on comparisons between Titan’s landscapes seen in the Cassini spacecraft data and terrestrial analogues, karstic-like dissolution and evaporitic crystallization have been suggested in various instances to take part in the landscape development on Titan. Dissolution has been invoked, for instance, for the development of the so-called “labyrinthic terrain”, located at high latitudes and resembling terrestrial cockpit or polygonal karst terrain. In this work, we aim at testing this hypothesis by comparing the natural landscapes visible in the Cassini/RADAR images of Titan’s surface, with those inferred from the use of a 3D Landscape Evolution Model (LEM) based on the Channel-Hillslope Integrated Landscape Development (CHILD), modified to include karstic dissolution as the major geological process. Digital Elevation Models (DEMs) are generated from an initial quasi-planar surface for a set of dissolution rates, diffusion coefficients (solute transport), and sink densities of the mesh. The landscape evolves over millions of years. Synthetic SAR images are generated from these DEMs in order to compare with Titan’s landforms seen in the actual SAR images and infer the possible thickness and degree of maturation of the Titan kars

    Evidence of Titan's Climate History from Evaporite Distribution

    Full text link
    Water-ice-poor, 5-Ό\mum-bright material on Saturn's moon Titan has previously been geomorphologically identified as evaporitic. Here we present a global distribution of the occurrences of the 5-Ό\mum-bright spectral unit, identified with Cassini's Visual Infrared Mapping Spectrometer (VIMS) and examined with RADAR when possible. We explore the possibility that each of these occurrences are evaporite deposits. The 5-Ό\mum-bright material covers 1\% of Titan's surface and is not limited to the poles (the only regions with extensive, long-lived surface liquid). We find the greatest areal concentration to be in the equatorial basins Tui Regio and Hotei Regio. Our interpretations, based on the correlation between 5-Ό\mum-bright material and lakebeds, imply that there was enough liquid present at some time to create the observed 5-Ό\mum-bright material. We address the climate implications surrounding a lack of evaporitic material at the south polar basins: if the south pole basins were filled at some point in the past, then where is the evaporite

    Development of labyrinths on Titan: A numerical model based on surface dissolution

    Get PDF
    Titan is an Earth-like world with active erosion processes based on the interaction of liquid methane with solid organics and ices at the surface, which shapes the landscapes over geological timescales. The Cassini mission allowed to discover the so-called “labyrinthic terrain”, heavily dissected regions on Titan located at high latitudes and resembling terrestrial cockpit or polygonal karst terrain developed by rock dissolution, thanks to repeated Cassini/RADAR observations. In this work, we make use of a 3D Landscape Evolution Model (LEM) that includes karstic dissolution as the major geological process, coupled to a radar backscattering model able to generate te associated SAR images of the numerical lansdcapes, in order to infer the possible thickness and degree of maturation of the Titan karst

    Structural analysis of sulfate vein networks in Gale crater (Mars)

    Get PDF
    The Curiosity rover's campaign in the Gale crater on Mars provides a large set of close-up images of sedimentary formations outcrops displaying a variety of diagenetic features such as light-toned veins, nodules and raised ridges. Through 2D and 3D analyses of Mastcam images we herein reconstruct the vein network of a sample area and estimated the stress field. Assessment of the spatial distribution of light-toned veins shows that the basin infillings, after burial and consolidation, experienced a sub-vertical compression and lateral extension coupled with fluid overpressure and cracking. Overall, rock failure and light-toned veins formations could have been generated by an overload produced by infilling material within the basin

    Cassini/VIMS hyperspectral observations of the HUYGENS landing site on Titan

    Get PDF
    Titan is one of the primary scientific objectives of the NASA ESA ASI Cassini Huygens mission. Scattering by haze particles in Titan's atmosphere and numerous methane absorptions dramatically veil Titan's surface in the visible range, though it can be studied more easily in some narrow infrared windows. The Visual and Infrared Mapping Spectrometer (VIMS) instrument onboard the Cassini spacecraft successfully imaged its surface in the atmospheric windows, taking hyperspectral images in the range 0.4 5.2 ?m. On 26 October (TA flyby) and 13 December 2004 (TB flyby), the Cassini Huygens mission flew over Titan at an altitude lower than 1200 km at closest approach. We report here on the analysis of VIMS images of the Huygens landing site acquired at TA and TB, with a spatial resolution ranging from 16 to14.4 km/pixel. The pure atmospheric backscattering component is corrected by using both an empirical method and a first-order theoretical model. Both approaches provide consistent results. After the removal of scattering, ratio images reveal subtle surface heterogeneities. A particularly contrasted structure appears in ratio images involving the 1.59 and 2.03 ?m images north of the Huygens landing site. Although pure water ice cannot be the only component exposed at Titan's surface, this area is consistent with a local enrichment in exposed water ice and seems to be consistent with DISR/Huygens images and spectra interpretations. The images show also a morphological structure that can be interpreted as a 150 km diameter impact crater with a central peak

    Potentially active regions on Titan: New processing of Cassini/VIMS data

    Get PDF
    The Cassini Visual and Infrared Mapping Spectrometer (VIMS) obtained data of Titan's surface from flybys performed during the last seven years. In the 0.8-5.2 ”m range, these spectro-imaging data showed that the surface consists of a multivariable geological terrain hosting complex geological processes. The data from the seven narrow methane spectral "windows" centered at 0.93, 1.08, 1.27, 1.59, 2.03, 2.8 and 5 ”m provide some information on the lower atmospheric context and the surface parameters that we want to determine. Atmospheric scattering and absorption need to be clearly evaluated before we can extract the surface properties. We apply here a statistical method [1, 2] and a radiative transfer method [3, 1] on three potentially "active" regions on Titan, i.e. regions possibly subject to change over time (in brightness and/or in color etc) [4]: Tui Regio (20°S, 130°W) [5], a 1,500-km long flow-like figure, Hotei Regio (26°S, 78°W) [6], a 700-km wide volcanic-like terrain, and Sotra Facula (15°S, 42°W) [7], a 235-km in diameter area. With our method of Principal Component Analysis (PCA) we have managed to isolate specific regions of distinct and diverse chemical composition. We have tested this method on the previously studied Sinlap crater [8], delimitating compositional heterogeneous areas compatible with the published conclusions by Le Mouélic et al. (2008). Our follow-up method focuses on retrieving the surface albedo of the three areas and of the surrounding terrains with different spectral response by applying a radiative transfer (RT) code. We have used as input most of the Cassini HASI and DISR measurements, as well as new methane absorption coefficients [9], which are important to evaluate the atmospheric contribution and to allow us to better constrain the real surface alterations, by comparing the spectra of these regions. By superposing these results onto the PCA maps, we can correlate composition and morphology. As a test case, we used our RT code to verify the varying brightness of Hotei Regio reported by other investigators based on models lacking proper simulation of the atmospheric absorption [10]. Even though we have used exactly the same dataset, we did not detect any significant surface albedo variations over time; this led us to revise the definition of "active" regions: even if these regions have not visually changed over the course of the Cassini mission, the determination of the chemical composition and the correlation with the morphological structures [11] observed in these areas do not rule out that past and/or ongoing cryovolcanic processes are still a possible interpretation. [1] Solomonidou, A. et al. (2011). Potentially active regions on Titan: New processing of Cassini/VIMS data. In preparation. [2] Stephan, K. et al. (2008). Reduction of instrument-dependent noise in hyperspectral image data using the principal component analysis: Applications to Galileo NIMS data. Planetary and Space Science 56, 406-419. [3] Hirtzig, M. et al. (2011). Applications of a new methane linelist to Cassini/VIMS spectra of Titan in the 1.28-5.2 ”m range . In preparation. [4] Wall, s. D. et al. (2009). Cassini RADAR images at Hotei Arcus and western Xanadu, Titan: Evidence for geologically recent cryovolcanic activity. Journal of Geophysical Research 36, L04203, [5] Barnes, J.W. et al. (2006). Cassini observations of flow-like features in western Tui Regio, Titan. Geophysical Research Letters 33, L16204. [6] Soderblom, L.A. et al. (2009). The geology of Hotei Regio, Titan: Correlation of Cassini VIMS and RADAR. Icarus 204, 610-618. [7] Lopes, R.M.C. et al. (2010). Distribution and interplay of geologic processes on Titan from Cassini radar data. Icarus 205, 540-558. [8] Le Mouélic et al. (2008). Mapping and interpretation of Sinlap crater on Titan using Cassini VIMS and RADAR data. Journal of Geophysical Research 113, E04003. [9] Campargue, A. et al. (2011). An empirical line list for methane at 80 K and 296 K in the 1.26-1.71 ”m region for planetary investigations. Application to Titan. Icarus. Submitted. [10] Nelson, R. et al (2009). Saturn's Titan: Surface change, ammonia, and implications for atmospheric and tectonic activity. Icarus 199, 429-441. [11] Solomonidou, A. et al. (2011). Possible morphotectonic features on Titan and their origin. Planetary and Space Science. Submitted

    Geomorphological significance of Ontario Lacus on Titan: Integrated interpretation of Cassini VIMS, ISS and RADAR data and comparison with the Etosha Pan (Namibia)

    Get PDF
    International audienceOntario Lacus is the largest lake of the whole southern hemisphere of Titan, Saturn's major moon. It has been imaged twice by each of the Cassini imaging systems (Imaging Science Subsystem (ISS) in 2004 and 2005, Visual and Infrared Mapping Spectrometer (VIMS) in 2007 and 2009 and Radar in 2009 and 2010). In this study, we take advantage of each imaging dataset to establish a global survey of Ontario Lacus' environment from 2005 to 2010. We perform a geomorphological mapping and interpretation of Ontario Lacus, mainly based on a joint analysis of VIMS and Radar SAR datasets, along with the T49 altimetric profile acquired in December 2008. The morphologies observed on Ontario Lacus are compared to landforms of a semi-arid terrestrial analog, which closely resembles Titan's lakes: the pans of the Etosha Basin, located in Namibia. From this comparison, we infer that Ontario Lacus is an extremely flat depression where liquids, only located in the darkest areas in the Radar data, cover topographic lows where the "alkanofer" would raise above the depression floor. The rest of the depression appears rather as a muddy flat surface likely composed of a thick coating of photon-absorbing materials, explaining its still rather dark appearance in the infrared and radar data. We also determined whether surface changes occurred during the 5 years time interval between 2005 and 2010. We found that the depression contour is constant at the resolution of ISS and VIMS data, both being consistent with the depression contour derived from the Radar data. Our interpretation, in which the liquids are located only in some parts of Ontario Lacus, agrees with the lack of significant change of the depression contour between 2007 (and 2005 with more uncertainties) and 2010

    The Stratigraphy of Central and Western Butte and the Greenheugh Pediment Contact

    Get PDF
    The Greenheugh pediment at the base of Aeolis Mons (Mt. Sharp), which may truncate units in the Murray formation and is capped by a thin sandstone unit, appears to represent a major shift in climate history within Gale crater. The pediment appears to be an erosional remnant of potentially a much more extensive feature. Curiositys traverse through the southern extent of Glen Torridon (south of Vera Rubin ridge) has brought the rover in contact with several new stratigraphic units that lie beneath the pediment. These strata were visited at two outcrop-forming buttes (Central and Western butte- both remnants of the retreating pediment) south of an orbitally defined boundary marking the transition from the Fractured Clay-bearing Unit (fCU) and the fractured Intermediate Unit (fIU). Here we present preliminary interpretations of the stratigraphy within Central and Western buttes and propose the Western butte cap rocks do not match the pediment capping unit
    • 

    corecore