75 research outputs found

    Coupling between quasiparticles and a bosonic mode in the normal state of HgBa2_2CuO4+δ_{4+\delta}

    Full text link
    We report a doping dependent study of the quasiparticles dynamics in HgBa2_2CuO4+δ_{4+\delta} via Electronic Raman Scattering. A well-defined energy scale is found in the normal state dynamics of the quasiparticles over a broad doping range. It is interpreted as evidence for coupling between the quasiparticles and a collective bosonic mode whose energy scale depend only weakly with doping. We contrast this behavior with that of the superconducting gap whose amplitude near the node continuously decreases towards the underdoped regime. We discuss the implications of our findings on the nature of the collective mode and argue that electron-phonon coupling is the most natural explanation.Comment: 5 pages, 4 figure

    The nodal gap component as a good candidate for the superconducting order parameter in cuprates

    Full text link
    Although more than twenty years have passed since the discovery of high temperature cuprate superconductivity, the identification of the superconducting order parameter is still under debate. Here, we show that the nodal gap component is the best candidate for the superconducting order parameter. It scales with the critical temperature TcT_c over a wide doping range and displays a significant temperature dependence below TcT_c in both the underdoped and the overdoped regimes of the phase diagram. In contrast, the antinodal gap component does not scale with TcT_c in the underdoped side and appears to be controlled by the pseudogap amplitude. Our experiments establish the existence of two distinct gaps in the underdoped cuprates

    Evolution of the gaps through the cuprate phase-diagram

    Full text link
    The actual physical origin of the gap at the antinodes, and a clear identification of the superconducting gap are fundamental open issues in the physics of high-TcT_c superconductors. Here, we present a systematic electronic Raman scattering study of a mercury-based single layer cuprate, as a function of both doping level and temperature. On the deeply overdoped side, we show that the antinodal gap is a true superconducting gap. In contrast, on the underdoped side, our results reveal the existence of a break point close to optimal doping below which the antinodal gap is gradually disconnected from superconductivity. The nature of both the superconducting and normal state is distinctly different on each side of this breakpoint

    Evidence of triggered star formation in G327.3-0.6. Dust-continuum mapping of an infrared dark cloud with P-ArT\'eMiS

    Get PDF
    Aims. Expanding HII regions and propagating shocks are common in the environment of young high-mass star-forming complexes. They can compress a pre-existing molecular cloud and trigger the formation of dense cores. We investigate whether these phenomena can explain the formation of high-mass protostars within an infrared dark cloud located at the position of G327.3-0.6 in the Galactic plane, in between two large infrared bubbles and two HII regions. Methods: The region of G327.3-0.6 was imaged at 450 ? m with the CEA P-ArT\'eMiS bolometer array on the Atacama Pathfinder EXperiment telescope in Chile. APEX/LABOCA and APEX-2A, and Spitzer/IRAC and MIPS archives data were used in this study. Results: Ten massive cores were detected in the P-ArT\'eMiS image, embedded within the infrared dark cloud seen in absorption at both 8 and 24 ?m. Their luminosities and masses indicate that they form high-mass stars. The kinematical study of the region suggests that the infrared bubbles expand toward the infrared dark cloud. Conclusions: Under the influence of expanding bubbles, star formation occurs in the infrared dark areas at the border of HII regions and infrared bubbles.Comment: 4 page

    Two Energy Scales and two Quasiparticle Dynamics in the Superconducting State of Underdoped Cuprates

    Full text link
    The superconducting state of underdoped cuprates is often described in terms of a single energy-scale, associated with the maximum of the (d-wave) gap. Here, we report on electronic Raman scattering results, which show that the gap function in the underdoped regime is characterized by two energy scales, depending on doping in opposite manners. Their ratios to the maximum critical temperature are found to be universal in cuprates. Our experimental results also reveal two different quasiparticle dynamics in the underdoped superconducting state, associated with two regions of momentum space: nodal regions near the zeros of the superconducting gap and antinodal regions. While antinodal quasiparticles quickly loose coherence as doping is reduced, coherent nodal quasiparticles persist down to low doping levels. A theoretical analysis using a new sum-rule allows us to relate the low-frequency-dependence of the Raman response to the temperature-dependence of the superfluid density, both controlled by nodal excitations.Comment: 16 pages, 5 figure

    Obscured Activity: AGN, Quasars, Starbursts and ULIGs observed by the Infrared Space Observatory

    Full text link
    Some of the most active galaxies in the Universe are obscured by large quantities of dust and emit a substantial fraction of their bolometric luminosity in the infrared. Observations of these infrared luminous galaxies with the Infrared Space Observatory (ISO) have provided a relatively unabsorbed view to the sources fuelling this active emission. The improved sensitivity, spatial resolution and spectroscopic capability of ISO over its predecessor Infrared Astronomical Satellite (IRAS), has enabled significant advances in the understanding of the infrared properties of active galaxies. ISO surveyed a wide range of active galaxies which, in the context of this review, includes those powered by intense bursts of star-formation as well as those containing a dominant active galactic nucleus (AGN). Mid infrared imaging resolved for the first time the dust enshrouded nuclei in many nearby galaxies, while a new era in infrared spectroscopy was opened by probing a wealth of atomic, ionic and molecular lines as well as broad band features in the mid and far infrared. This was particularly useful since it resulted in the understanding of the power production, excitation and fuelling mechanisms in the nuclei of active galaxies including the intriguing but so far elusive ultraluminous infrared galaxies. Detailed studies of various classes of AGN and quasars greatly improved our understanding of the unification scenario. Far-infrared imaging and photometry also revealed the presence of a new very cold dust component in galaxies and furthered our knowledge of the far-infrared properties of faint starbursts, ULIGs and quasars. We summarise almost nine years of key results based upon ISO data spanning the full range of luminosity and type of active galaxies.Comment: Accepted for publication in 'ISO science legacy - a compact review of ISO major achievements', Space Science Reviews - dedicated ISO issue. To be published by Springer in 2005. 62 pages (low resolution figures version). Higher resolution PDFs available from http://users.physics.uoc.gr/~vassilis/papers/VermaA.pdf or http://www.iso.vilspa.esa.es/science/SSR/Verma.pd

    Characterizing filaments in regions of high-mass star formation: High-resolution submilimeter imaging of the massive star-forming complex NGC 6334 with ArTeMiS

    Get PDF
    Context. Herschel observations of nearby molecular clouds suggest that interstellar filaments and prestellar cores represent two fundamental steps in the star formation process. The observations support a picture of low-mass star formation according to which filaments of ~0.1 pc width form first in the cold interstellar medium, probably as a result of large-scale compression of interstellar matter by supersonic turbulent flows, and then prestellar cores arise from gravitational fragmentation of the densest filaments. Whether this scenario also applies to regions of high-mass star formation is an open question, in part because the resolution of Herschel is insufficient to resolve the inner width of filaments in the nearest regions of massive star formation. Aims. In an effort to characterize the inner width of filaments in high-mass star-forming regions, we imaged the central part of the NGC 6334 complex at a resolution higher by a factor of >3 than Herschel at 350 μm. Methods. We used the large-format bolometer camera ArTéMiS on the APEX telescope and combined the high-resolution ArTéMiS data at 350 μm with Herschel/HOBYS data at 70–500 μm to ensure good sensitivity to a broad range of spatial scales. This allowed us to study the structure of the main narrow filament of the complex with a resolution of 8″ or <0.07 pc at d ~ 1.7 kpc. Results. Our study confirms that this filament is a very dense, massive linear structure with a line mass ranging from ~500 M⊙/pc to ~2000 M⊙/pc over nearly 10 pc. It also demonstrates for the first time that its inner width remains as narrow as W ~ 0.15 ± 0.05 pc all along the filament length, within a factor of <2 of the characteristic 0.1 pc value found with Herschel for lower-mass filaments in the Gould Belt. Conclusions. While it is not completely clear whether the NGC 6334 filament will form massive stars in the future, it is two to three orders of magnitude denser than the majority of filaments observed in Gould Belt clouds, and has a very similar inner width. This points to a common physical mechanism for setting the filament width and suggests that some important structural properties of nearby clouds also hold in high-mass star-forming regions
    • …
    corecore