research

Evolution of the gaps through the cuprate phase-diagram

Abstract

The actual physical origin of the gap at the antinodes, and a clear identification of the superconducting gap are fundamental open issues in the physics of high-TcT_c superconductors. Here, we present a systematic electronic Raman scattering study of a mercury-based single layer cuprate, as a function of both doping level and temperature. On the deeply overdoped side, we show that the antinodal gap is a true superconducting gap. In contrast, on the underdoped side, our results reveal the existence of a break point close to optimal doping below which the antinodal gap is gradually disconnected from superconductivity. The nature of both the superconducting and normal state is distinctly different on each side of this breakpoint

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020