The actual physical origin of the gap at the antinodes, and a clear
identification of the superconducting gap are fundamental open issues in the
physics of high-Tc superconductors. Here, we present a systematic electronic
Raman scattering study of a mercury-based single layer cuprate, as a function
of both doping level and temperature. On the deeply overdoped side, we show
that the antinodal gap is a true superconducting gap. In contrast, on the
underdoped side, our results reveal the existence of a break point close to
optimal doping below which the antinodal gap is gradually disconnected from
superconductivity. The nature of both the superconducting and normal state is
distinctly different on each side of this breakpoint