205 research outputs found

    Roles of heat shock factor 1 and 2 in response to proteasome inhibition: consequence on p53 stability.

    No full text
    International audienceA single heat shock factor (HSF), mediating the heat shock response, exists from yeast to Drosophila, whereas several related HSFs have been found in mammals. This raises the question of the specific or redundant functions of the different members of the HSF family and in particular of HSF1 and HSF2, which are both ubiquitously expressed. Using immortalized mouse embryonic fibroblasts (iMEFs) derived from wild-type, Hsf1(-/-), Hsf2(-/-) or double-mutant mice, we observed the distinctive behaviors of these mutants with respect to proteasome inhibition. This proteotoxic stress reduces to the same extent the viability of Hsf1(-/-)- and Hsf2(-/-)-deficient cells, but through different underlying mechanisms. Contrary to Hsf2(-/-) cells, Hsf1(-/-) cells are unable to induce pro-survival heat shock protein expression. Conversely, proteasome activity is lower in Hsf2(-/-) cells and the expression of some proteasome subunits, such as Psmb5 and gankyrin, is decreased. As gankyrin is an oncoprotein involved in p53 degradation, we analyzed the status of p53 in HSF-deficient iMEFs and observed that it was strongly stabilized in Hsf2(-/-) cells. This study points a new role for HSF2 in the regulation of protein degradation and suggests that pan-HSF inhibitors could be valuable tools to reduce chemoresistance to proteasome inhibition observed in cancer therapy

    A functional network of highly pure enteric neurons in a dish

    Get PDF
    The enteric nervous system (ENS) is the intrinsic nervous system that innervates the entire digestive tract and regulates major digestive functions. Recent evidence has shown that functions of the ENS critically rely on enteric neuronal connectivity; however, experimental models to decipher the underlying mechanisms are limited. Compared to the central nervous system, for which pure neuronal cultures have been developed for decades and are recognized as a reference in the field of neuroscience, an equivalent model for enteric neurons is lacking. In this study, we developed a novel model of highly pure rat embryonic enteric neurons with dense and functional synaptic networks. The methodology is simple and relatively fast. We characterized enteric neurons using immunohistochemical, morphological, and electrophysiological approaches. In particular, we demonstrated the applicability of this culture model to multi-electrode array technology as a new approach for monitoring enteric neuronal network activity. This in vitro model of highly pure enteric neurons represents a valuable new tool for better understanding the mechanisms involved in the establishment and maintenance of enteric neuron synaptic connectivity and functional networks

    Tau expression and phosphorylation in enteroendocrine cells

    Get PDF
    Background and objectiveThere is mounting evidence to suggest that the gut-brain axis is involved in the development of Parkinson’s disease (PD). In this regard, the enteroendocrine cells (EEC), which faces the gut lumen and are connected with both enteric neurons and glial cells have received growing attention. The recent observation showing that these cells express alpha-synuclein, a presynaptic neuronal protein genetically and neuropathologically linked to PD came to reinforce the assumption that EEC might be a key component of the neural circuit between the gut lumen and the brain for the bottom-up propagation of PD pathology. Besides alpha-synuclein, tau is another key protein involved in neurodegeneration and converging evidences indicate that there is an interplay between these two proteins at both molecular and pathological levels. There are no existing studies on tau in EEC and therefore we set out to examine the isoform profile and phosphorylation state of tau in these cells.MethodsSurgical specimens of human colon from control subjects were analyzed by immunohistochemistry using a panel of anti-tau antibodies together with chromogranin A and Glucagon-like peptide-1 (two EEC markers) antibodies. To investigate tau expression further, two EEC lines, namely GLUTag and NCI-H716 were analyzed by Western blot with pan-tau and tau isoform specific antibodies and by RT-PCR. Lambda phosphatase treatment was used to study tau phosphorylation in both cell lines. Eventually, GLUTag were treated with propionate and butyrate, two short chain fatty acids known to sense EEC, and analyzed at different time points by Western blot with an antibody specific for tau phosphorylated at Thr205.ResultsWe found that tau is expressed and phosphorylated in EEC in adult human colon and that both EEC lines mainly express two tau isoforms that are phosphorylated under basal condition. Both propionate and butyrate regulated tau phosphorylation state by decreasing its phosphorylation at Thr205.Conclusion and inferenceOur study is the first to characterize tau in human EEC and in EEC lines. As a whole, our findings provide a basis to unravel the functions of tau in EEC and to further investigate the possibility of pathological changes in tauopathies and synucleinopathies

    Ondes millimétriques et cellules nerveuses

    No full text
    National audienceD’ici 2020, des systèmes sans fil dans la bande de fréquences des 60 GHz, c’est-à-dire dans la gamme des ondes millimétriques (OMM), devrait gagner les foyers et les milieux professionnels. Cependant, on ne peut pas écarter la possibilité que ces nouveaux rayonnements puissent avoir des effets biologiques car les OMM sont utilisées en thérapie. Les OMM correspondent aux fréquences comprises entre 30 GHz et 300 GHz. Comparées aux radiofréquences utilisées en téléphonie mobile, les OMM sont absorbées par les tissus sur une très faible profondeur, donc essentiellement au niveau de la peau. L’objectif principal du projet "OMcell" est d’étudier l’impact potentiel des OMM sur des cultures de cellules présentant un phénotype neuronal
    • …
    corecore