11 research outputs found

    Is the meiofauna a good indicator for climate change and anthropogenic impacts?

    Get PDF
    Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research

    Influence d'une source prévisible de nourriture anthropogénique sur l'écologie spatiale, la dynamique populationnelle et la conservation d'un prédateur marin

    No full text
    Seabirds are flagship species, boundary objects linking air and water, oceans and continents, Northern and Southern countries, binding a great variety of socio-ecosystems across the planet. Due to their ubiquity, they are exposed to numerous global threats. Among them, interactions with fisheries might be the main risk for seabirds at sea. The conservation status of seabirds is thereby affected, and priority actions due to reduce these impacts have to be established. Indeed, seabirds catch the attention of all stakeholders and of the general public, who are sensitive to the fate of their populations. Implementing tools and strategies allowing seabird conservation is therefore an urgent societal request. The Northern gannet (Morus bassanus) is emblematic of seabird conservation in metropolitan France, with a single breeding colony under strict protection within the RĂ©serve Naturelle Nationale de l’archipel des Sept-Îles. Despite all conservation efforts, colony size and breeding success have been declining in recent years. A decadal biotelemetry study allowed us to test hypotheses linked to this decline. Notably, we showed that, during the breeding season, gannets shifted from feeding on natural prey, to taking fisheries waste. The consumption of these anthropogenic subsides affects foraging effort, adult body condition and reproductive output. Further, we showed that, during the inter-breeding period, gannets were exposed to enhanced bycatch risk and competition with fisheries for small pelagic fish. This had a strong impact on adult inter-annual return rates to the colony, potentially explaining the recent decline of the Sept-Îles gannetry. Overall, we conclude that an integrated conservation plan for Northern gannets, as well as for the marine megafauna in general, is only possible through ecosystem-based fisheries management. Specifically, the joint use of fish stocks by marine predators and fisheries should be taken into account by management schemes, at-sea dumping of fishery wastes should be reduced, and marine protected areas including true no-take zones should be designed, also by taking into account the spatial ecology of the marine megafauna such as seabirds.Les oiseaux marins sont des espĂšces emblĂ©matiques. Passeuses de frontiĂšres, de la mer Ă  la terre, de l’air Ă  l’eau, des pays du nord au pays du sud, elles crĂ©ent un lien entre les diffĂ©rents sociaux- Ă©cosystĂšmes marins de notre planĂšte. Du fait de leur ubiquitĂ©, elles sont exposĂ©es Ă  de nombreuses menaces autour du monde. Parmi elles, les interactions avec les pĂȘcheries reprĂ©sentent la part de risque la plus importante pour ces espĂšces lorsqu’elles sont en mer. Leur statut de conservation en est affectĂ©, et des actions prioritaires visant Ă  rĂ©duire ces impacts doivent ĂȘtre mis en place. Ces espĂšces bĂ©nĂ©ficient de l’intĂ©rĂȘt, voir de la sympathie des populations et le grand public est sensible au sort de leurs populations. Mettre en place des stratĂ©gies et des outils permettant la conservation des populations d’oiseaux marins rĂ©pond donc Ă  une demande sociĂ©tale urgente.Le fou de Bassan (Morus bassanus) est une espĂšce emblĂ©matique de la conservation des oiseaux marins en France mĂ©tropolitaine. Au sein de la RĂ©serve Naturelle Nationale de l’archipel des Sept-Îles, la seule colonie de reproduction Française de cette espĂšce bĂ©nĂ©ficie d’un statut de protection fort. MalgrĂ© cela, au cours de la derniĂšre dĂ©cennie, notre Ă©tude a mis en Ă©vidence une inversion de la dynamique de la population et une baisse du succĂšs reproducteur. La mise en place d’un suivi bio-tĂ©lĂ©mĂ©trique nous a alors permis de chercher Ă  comprendre et expliquer ces changements. Nous avons notamment mis en Ă©vidence, que durant la saison de reproduction, les fous des Sept-Îles souffraient de la diminution de leurs proies naturelles et se rabattaient alors sur des rejets de pĂȘche. La consommation de ces subsides anthropiques affecte les efforts de recherche alimentaire, la condition des individus et finalement leur reproduction. De plus, nous avons montrĂ© que durant la pĂ©riode internuptiale, ils Ă©taient exposĂ©s Ă  de forts risques de captures accidentelles et Ă  une diminution globale de leurs proies prĂ©fĂ©rentielles, affectant les taux de retours Ă  la colonie et expliquant potentiellement la baisse observĂ©e de la taille de la population.Ces travaux nous amĂšnent Ă  conclure que la bonne conservation des fous des Sept-Îles, comme celle de toute la mĂ©gafaune marine, ne pourra se faire qu’en adoptant une approche Ă©cosystĂ©mique des pĂȘches. ParticuliĂšrement, le partage de certaines ressources entre prĂ©dateurs supĂ©rieurs et pĂȘcheries devra ĂȘtre pris en compte dans la gestion des stocks, la diminution des rejets de pĂȘche devra ĂȘtre favorisĂ©e et des aires marines protĂ©gĂ©es pĂ©lagiques excluant les activitĂ©s de pĂȘche, dessinĂ©es Ă  partir des zones d’intĂ©rĂȘt pour les oiseaux marins, devront ĂȘtre mise en place

    Influence of a predictable source of anthropogenic food on the spatial ecology, the population dynamic and the conservation of a marin top predator

    No full text
    Les oiseaux marins sont des espĂšces emblĂ©matiques. Passeuses de frontiĂšres, de la mer Ă  la terre, de l’air Ă  l’eau, des pays du nord au pays du sud, elles crĂ©ent un lien entre les diffĂ©rents sociaux- Ă©cosystĂšmes marins de notre planĂšte. Du fait de leur ubiquitĂ©, elles sont exposĂ©es Ă  de nombreuses menaces autour du monde. Parmi elles, les interactions avec les pĂȘcheries reprĂ©sentent la part de risque la plus importante pour ces espĂšces lorsqu’elles sont en mer. Leur statut de conservation en est affectĂ©, et des actions prioritaires visant Ă  rĂ©duire ces impacts doivent ĂȘtre mis en place. Ces espĂšces bĂ©nĂ©ficient de l’intĂ©rĂȘt, voir de la sympathie des populations et le grand public est sensible au sort de leurs populations. Mettre en place des stratĂ©gies et des outils permettant la conservation des populations d’oiseaux marins rĂ©pond donc Ă  une demande sociĂ©tale urgente.Le fou de Bassan (Morus bassanus) est une espĂšce emblĂ©matique de la conservation des oiseaux marins en France mĂ©tropolitaine. Au sein de la RĂ©serve Naturelle Nationale de l’archipel des Sept-Îles, la seule colonie de reproduction Française de cette espĂšce bĂ©nĂ©ficie d’un statut de protection fort. MalgrĂ© cela, au cours de la derniĂšre dĂ©cennie, notre Ă©tude a mis en Ă©vidence une inversion de la dynamique de la population et une baisse du succĂšs reproducteur. La mise en place d’un suivi bio-tĂ©lĂ©mĂ©trique nous a alors permis de chercher Ă  comprendre et expliquer ces changements. Nous avons notamment mis en Ă©vidence, que durant la saison de reproduction, les fous des Sept-Îles souffraient de la diminution de leurs proies naturelles et se rabattaient alors sur des rejets de pĂȘche. La consommation de ces subsides anthropiques affecte les efforts de recherche alimentaire, la condition des individus et finalement leur reproduction. De plus, nous avons montrĂ© que durant la pĂ©riode internuptiale, ils Ă©taient exposĂ©s Ă  de forts risques de captures accidentelles et Ă  une diminution globale de leurs proies prĂ©fĂ©rentielles, affectant les taux de retours Ă  la colonie et expliquant potentiellement la baisse observĂ©e de la taille de la population.Ces travaux nous amĂšnent Ă  conclure que la bonne conservation des fous des Sept-Îles, comme celle de toute la mĂ©gafaune marine, ne pourra se faire qu’en adoptant une approche Ă©cosystĂ©mique des pĂȘches. ParticuliĂšrement, le partage de certaines ressources entre prĂ©dateurs supĂ©rieurs et pĂȘcheries devra ĂȘtre pris en compte dans la gestion des stocks, la diminution des rejets de pĂȘche devra ĂȘtre favorisĂ©e et des aires marines protĂ©gĂ©es pĂ©lagiques excluant les activitĂ©s de pĂȘche, dessinĂ©es Ă  partir des zones d’intĂ©rĂȘt pour les oiseaux marins, devront ĂȘtre mise en place.Seabirds are flagship species, boundary objects linking air and water, oceans and continents, Northern and Southern countries, binding a great variety of socio-ecosystems across the planet. Due to their ubiquity, they are exposed to numerous global threats. Among them, interactions with fisheries might be the main risk for seabirds at sea. The conservation status of seabirds is thereby affected, and priority actions due to reduce these impacts have to be established. Indeed, seabirds catch the attention of all stakeholders and of the general public, who are sensitive to the fate of their populations. Implementing tools and strategies allowing seabird conservation is therefore an urgent societal request. The Northern gannet (Morus bassanus) is emblematic of seabird conservation in metropolitan France, with a single breeding colony under strict protection within the RĂ©serve Naturelle Nationale de l’archipel des Sept-Îles. Despite all conservation efforts, colony size and breeding success have been declining in recent years. A decadal biotelemetry study allowed us to test hypotheses linked to this decline. Notably, we showed that, during the breeding season, gannets shifted from feeding on natural prey, to taking fisheries waste. The consumption of these anthropogenic subsides affects foraging effort, adult body condition and reproductive output. Further, we showed that, during the inter-breeding period, gannets were exposed to enhanced bycatch risk and competition with fisheries for small pelagic fish. This had a strong impact on adult inter-annual return rates to the colony, potentially explaining the recent decline of the Sept-Îles gannetry. Overall, we conclude that an integrated conservation plan for Northern gannets, as well as for the marine megafauna in general, is only possible through ecosystem-based fisheries management. Specifically, the joint use of fish stocks by marine predators and fisheries should be taken into account by management schemes, at-sea dumping of fishery wastes should be reduced, and marine protected areas including true no-take zones should be designed, also by taking into account the spatial ecology of the marine megafauna such as seabirds

    A toolkit to study seabird–fishery interactions

    No full text
    International audienc

    Where to Forage in the Absence of Sea Ice? Bathymetry As a Key Factor for an Arctic Seabird

    Get PDF
    The earth is warming at an alarming rate, especially in the Arctic, where a marked decline in sea ice cover may have far-ranging consequences for endemic species. Little auks, endemic Arctic seabirds, are key bioindicators as they forage in the marginal ice zone and feed preferentially on lipid-rich Arctic copepods and ice-associated amphipods sensitive to the consequences of global warming. We tested how little auks cope with an ice-free foraging environment during the breeding season. To this end, we took advantage of natural variation in sea ice concentration along the east coast of Greenland. We compared foraging and diving behaviour, chick diet and growth and adult body condition between two years, in the presence versus nearby absence of sea ice in the vicinity of their breeding site. Moreover, we sampled zooplankton at sea when sea ice was absent to evaluate prey location and little auk dietary preferences. Little auks foraged in the same areas both years, irrespective of sea ice presence/concentration, and targeted the shelf break and the continental shelf. We confirmed that breeding little auks showed a clear preference for larger copepod species to feed their chick, but caught smaller copepods and nearly no ice-associated amphipod when sea ice was absent. Nevertheless, these dietary changes had no impact on chick growth and adult body condition. Our findings demonstrate the importance of bathymetry for profitable little auk foraging, whatever the sea-ice conditions. Our investigations, along with recent studies, also confirm more flexibility than previously predicted for this key species in a warming Arctic

    Arctic warming: non-linear impacts of sea-ice and glacier melt on seabird foraging

    Get PDF
    International audienceArctic climate change has profound impacts on the cryosphere, notably via shrinking sea-ice cover and retreating glaciers, and it is essential to evaluate and forecast the ecological consequences of such changes. We studied zooplankton-feeding little auks (Alle alle), a key sentinel species of the Arctic, at their northernmost breeding site in Franz-Josef Land (80°N), Russian Arctic. We tested the hypothesis that little auks still benefit from pristine arctic environmental conditions in this remote area. To this end we analysed remote-sensing data on sea-ice and coastal glacier dynamics collected in our study area across 1979-2013. Further, we recorded little auk foraging behaviour using miniature electronic tags attached to the birds in the summer of 2013, and compared it with similar data collected at three localities across the Atlantic Arctic. We also compared current and historical data on Franz-Josef Land little auk diet, morphometrics and chick-growth curves. Our analyses reveal that summer sea-ice retreated markedly during the last decade, leaving the Franz-Josef Land archipelago virtually sea-ice free each summer since 2005. This had a profound impact on little auk foraging, which lost their sea-ice associated prey. Concomitantly, large coastal glaciers retreated rapidly, releasing large volumes of melt water. Zooplankton is stunned by cold and osmotic shock at the boundary between glacier melt and coastal waters, creating new foraging hotspots for little auks. Birds therefore switched from foraging at distant ice-edge localities, to highly profitable feeding at glacier melt-water fronts within <5 km of their breeding site. Through this behavioural plasticity little auks maintained their chick growth rates, but showed a 4% decrease in adult body mass. Our study demonstrates that arctic cryosphere changes may have antagonistic ecological consequences on coastal trophic flow. Such non-linear responses complicate modelling exercises of current and future polar ecosystem dynamics

    Relative abundance (RA, mean ± SD, %) and occurrence frequency (OF, %) of zooplankton found in little auk gular pouches in 2012 and 2014, and in at-sea samples collected in 2014; and linear food selection index (mean ± SD, %) for 2014 prey.

    No full text
    <p><i>Calanus hyperboreus</i>, <i>C</i>. <i>glacialis</i> and <i>C</i>. <i>finmarchicus</i> groups included the stages CIV, CV, and adult males and females. Other copepodite stages of these 3 species were included in the ‘<i>Calanus</i> CI-CIII’ group. Species included in the ‘small copepods’ group are <i>Triconia borealis</i>, <i>Scaphocalanus magnus</i>, <i>Metridia longa</i> and <i>Microcalanus spp</i> for the Continental shelf, and <i>Triconia borealis</i>, <i>Metridia longa</i> and <i>Microcalanus spp</i> for the shelf break and the open ocean. Main little auk prey species are in bold. Asterisk indicates ice-associated prey. Continental shelf, shelf break and open ocean groups were defined based on isobaths (< 500 m, 500–1500 m and > 1500 m respectively). Linear food selection index is the difference between prey proportion found in little auk gular pouch and prey proportion in the environment and ranges from -1 to 1 [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0157764#pone.0157764.ref038" target="_blank">38</a>]. A positive value indicates preference and negative or null values avoidance or unavailability.</p

    (A) Location of the study site, sea ice extent and GPS tracks from (B) 2012 and (C) 2014 and (D) 75% kernel contours of resting and foraging positions in 2012 (green), and 2014 (pink), and the shelf break area (yellow).

    No full text
    <p>1A: General map situating Ukaleqarteq (red dot) and the location of the studied area (red rectangle) represented in Figs 1B, 1C, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0157764#pone.0157764.g005" target="_blank">5A</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0157764#pone.0157764.s001" target="_blank">S1</a>. 1B and 1C: GPS tracks: red dots correspond to foraging or resting (speed <10 km.h<sup>-1</sup>) and black dots to travelling (speed >10 km.h<sup>-1</sup>). Sea ice extent data were downloaded from the U.S. National Ice Center (<a href="http://www.natice.noaa.gov/products/daily_products.html" target="_blank">http://www.natice.noaa.gov/products/daily_products.html</a>, 24 July 2012 and 23 July 2014). White: pack ice with an ice concentration >80%. Light blue: marginal ice zone (MIZ) with an ice concentration <80%. In the marginal ice zone, sea ice concentration decreased between pack ice and open water. Black lines: 500-m isobaths. GPS track of the bird going far North-East in 2014 was not included in the analyses because it was not complete, but we present it on this map to show how this bird travelled along the shelf break and probably target areas of high ice concentration. 1D. Red lines represent the 500 and 1500m isobaths used to delimit the shelf break area. Projection: GR96/ UTM zone 27N.</p

    Statistics summary for (A) foraging trips performed by little auks equipped with GPSs (2012 and 2014); and (B) dives performed by little auks equipped with TDRs (2012 and 2014).

    No full text
    <p>Statistics summary for (A) foraging trips performed by little auks equipped with GPSs (2012 and 2014); and (B) dives performed by little auks equipped with TDRs (2012 and 2014).</p
    corecore