5,398 research outputs found

    Impermissibility of Impersonal Harm: Impersonal Harm, Social Values, and Genetic Enhancement

    Get PDF
    https://openworks.mdanderson.org/sumexp22/1110/thumbnail.jp

    Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress

    Get PDF
    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse

    Glycogen Synthase Kinase 3 Beta (GSK3Ξ²) Phosphorylates the RNAase III Enzyme Drosha at S300 and S302

    Get PDF
    The canonical microRNA (miRNA) pathway commences with the enzymatic cleavage of the primary gene transcript (pri-miRNA) by the RNAase III enzyme Drosha in the nucleus into shorter pre-miRNA species that are subsequently exported to the cytoplasm for further processing into shorter, mature miRNA molecules. Using a series of reporter constructs, we have previously demonstrated that phosphorylation of Drosha at Ser 300 and 302 was required for its nuclear localization. Here, we identify GSK3Ξ² as the culprit kinase. We demonstrate that Drosha is unable to selectively localize to the nucleus in cells deficient in GSK3Ξ². These findings expand the substrate base of GSK3Ξ² to include a central component of the miRNA biogenesis pathway

    Involvement of Noradrenergic Neurotransmission in the Stress- but not Cocaine-Induced Reinstatement of Extinguished Cocaine-Induced Conditioned Place Preference in Mice: Role for Ξ²-2 Adrenergic Receptors

    Get PDF
    The responsiveness of central noradrenergic systems to stressors and cocaine poses norepinephrine as a potential common mechanism through which drug re-exposure and stressful stimuli promote relapse. This study investigated the role of noradrenergic systems in the reinstatement of extinguished cocaine-induced conditioned place preference by cocaine and stress in male C57BL/6 mice. Cocaine- (15 mg/kg, i.p.) induced conditioned place preference was extinguished by repeated exposure to the apparatus in the absence of drug and reestablished by a cocaine challenge (15 mg/kg), exposure to a stressor (6-min forced swim (FS); 20–25Β°C water), or administration of the Ξ±-2 adrenergic receptor (AR) antagonists yohimbine (2 mg/kg, i.p.) or BRL44408 (5, 10 mg/kg, i.p.). To investigate the role of ARs, mice were administered the nonselective Ξ²-AR antagonist, propranolol (5, 10 mg/kg, i.p.), the Ξ±-1 AR antagonist, prazosin (1, 2 mg/kg, i.p.), or the Ξ±-2 AR agonist, clonidine (0.03, 0.3 mg/kg, i.p.) before reinstatement testing. Clonidine, prazosin, and propranolol failed to block cocaine-induced reinstatement. The low (0.03 mg/kg) but not high (0.3 mg/kg) clonidine dose fully blocked FS-induced reinstatement but not reinstatement by yohimbine. Propranolol, but not prazosin, blocked reinstatement by both yohimbine and FS, suggesting the involvement of Ξ²-ARs. The Ξ²-2 AR antagonist ICI-118551 (1 mg/kg, i.p.), but not the Ξ²-1 AR antagonist betaxolol (10 mg/kg, i.p.), also blocked FS-induced reinstatement. These findings suggest that stress-induced reinstatement requires noradrenergic signaling through Ξ²-2 ARs and that cocaine-induced reinstatement does not require AR activation, even though stimulation of central noradrenergic neurotransmission is sufficient to reinstate

    Diquat Derivatives: Highly Active, Two-Dimensional Nonlinear Optical Chromophores with Potential Redox Switchability

    Get PDF
    In this article, we present a detailed study of structureβˆ’activity relationships in diquaternized 2,2β€²-bipyridyl (diquat) derivatives. Sixteen new chromophores have been synthesized, with variations in the amino electron donor substituents, Ο€-conjugated bridge, and alkyl diquaternizing unit. Our aim is to combine very large, two-dimensional (2D) quadratic nonlinear optical (NLO) responses with reversible redox chemistry. The chromophores have been characterized as their PF_6^βˆ’ salts by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Their visible absorption spectra are dominated by intense Ο€ β†’ Ο€^* intramolecular charge-transfer (ICT) bands, and all show two reversible diquat-based reductions. First hyperpolarizabilities Ξ² have been measured by using hyper-Rayleigh scattering with an 800 nm laser, and Stark spectroscopy of the ICT bands affords estimated static first hyperpolarizabilities Ξ²_0. The directly and indirectly derived Ξ² values are large and increase with the extent of Ο€-conjugation and electron donor strength. Extending the quaternizing alkyl linkage always increases the ICT energy and decreases the E_(1/2) values for diquat reduction, but a compensating increase in the ICT intensity prevents significant decreases in Stark-based Ξ²_0 responses. Nine single-crystal X-ray structures have also been obtained. Time-dependent density functional theory clarifies the molecular electronic/optical properties, and finite field calculations agree with polarized HRS data in that the NLO responses of the disubstituted species are dominated by β€˜off-diagonal’ Ξ²_(zyy) components. The most significant findings of these studies are: (i) Ξ²_0 values as much as 6 times that of the chromophore in the technologically important material (E)-4β€²-(dimethylamino)-N-methyl-4-stilbazolium tosylate; (ii) reversible electrochemistry that offers potential for redox-switching of optical properties over multiple states; (iii) strongly 2D NLO responses that may be exploited for novel practical applications; (iv) a new polar material, suitable for bulk NLO behavior

    Evaluation of a candidate breast cancer associated SNP in ERCC4 as a risk modifier in BRCA1 and BRCA2 mutation carriers. Results from the Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA)

    Get PDF
    Background: In this study we aimed to evaluate the role of a SNP in intron 1 of the ERCC4 gene (rs744154), previously reported to be associated with a reduced risk of breast cancer in the general population, as a breast cancer risk modifier in BRCA1 and BRCA2 mutation carriers. Methods: We have genotyped rs744154 in 9408 BRCA1 and 5632 BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and assessed its association with breast cancer risk using a retrospective weighted cohort approach. Results: We found no evidence of association with breast cancer risk for BRCA1 (per-allele HR: 0.98, 95% CI: 0.93–1.04, P=0.5) or BRCA2 (per-allele HR: 0.97, 95% CI: 0.89–1.06, P=0.5) mutation carriers. Conclusion: This SNP is not a significant modifier of breast cancer risk for mutation carriers, though weak associations cannot be ruled out. A Osorio1, R L Milne2, G Pita3, P Peterlongo4,5, T Heikkinen6, J Simard7, G Chenevix-Trench8, A B Spurdle8, J Beesley8, X Chen8, S Healey8, KConFab9, S L Neuhausen10, Y C Ding10, F J Couch11,12, X Wang11, N Lindor13, S Manoukian4, M Barile14, A Viel15, L Tizzoni5,16, C I Szabo17, L Foretova18, M Zikan19, K Claes20, M H Greene21, P Mai21, G Rennert22, F Lejbkowicz22, O Barnett-Griness22, I L Andrulis23,24, H Ozcelik24, N Weerasooriya23, OCGN23, A-M Gerdes25, M Thomassen25, D G Cruger26, M A Caligo27, E Friedman28,29, B Kaufman28,29, Y Laitman28, S Cohen28, T Kontorovich28, R Gershoni-Baruch30, E Dagan31,32, H JernstrΓΆm33, M S Askmalm34, B Arver35, B Malmer36, SWE-BRCA37, S M Domchek38, K L Nathanson38, J Brunet39, T RamΓ³n y Cajal40, D Yannoukakos41, U Hamann42, HEBON37, F B L Hogervorst43, S Verhoef43, EB GΓ³mez GarcΓ­a44,45, J T Wijnen46,47, A van den Ouweland48, EMBRACE37, D F Easton49, S Peock49, M Cook49, C T Oliver49, D Frost49, C Luccarini50, D G Evans51, F Lalloo51, R Eeles52, G Pichert53, J Cook54, S Hodgson55, P J Morrison56, F Douglas57, A K Godwin58, GEMO59,60,61, O M Sinilnikova59,60, L Barjhoux59,60, D Stoppa-Lyonnet61, V Moncoutier61, S Giraud59, C Cassini62,63, L Olivier-Faivre62,63, F RΓ©villion64, J-P Peyrat64, D Muller65, J-P Fricker65, H T Lynch66, E M John67, S Buys68, M Daly69, J L Hopper70, M B Terry71, A Miron72, Y Yassin72, D Goldgar73, Breast Cancer Family Registry37, C F Singer74, D Gschwantler-Kaulich74, G Pfeiler74, A-C Spiess74, Thomas v O Hansen75, O T Johannsson76, T Kirchhoff77, K Offit77, K Kosarin77, M Piedmonte78, G C Rodriguez79, K Wakeley80, J F Boggess81, J Basil82, P E Schwartz83, S V Blank84, A E Toland85, M Montagna86, C Casella87, E N Imyanitov88, A Allavena89, R K Schmutzler90, B Versmold90, C Engel91, A Meindl92, N Ditsch93, N Arnold94, D Niederacher95, H Deißler96, B Fiebig97, R Varon-Mateeva98, D Schaefer99, U G Froster100, T Caldes101, M de la Hoya101, L McGuffog49, A C Antoniou49, H Nevanlinna6, P Radice4,5 and J BenΓ­tez1,3 on behalf of CIMB

    Embodying compassion: A virtual reality paradigm for overcoming excessive self-criticism

    Get PDF
    Virtual reality has been successfully used to study and treat psychological disorders such as phobias and posttraumatic stress disorder but has rarely been applied to clinically-relevant emotions other than fear and anxiety. Self-criticism is a ubiquitous feature of psychopathology and can be treated by increasing levels of self-compassion. We exploited the known effects of identification with a virtual body to arrange for healthy female volunteers high in self-criticism to experience self-compassion from an embodied first-person perspective within immersive virtual reality. Whereas observation and practice of compassionate responses reduced self-criticism, the additional experience of embodiment also increased self-compassion and feelings of being safe. The results suggest potential new uses for immersive virtual reality in a range of clinical conditions.N/

    Disruption of the Arsenic (+3 Oxidation State) Methyltransferase Gene in the Mouse Alters the Phenotype for Methylation of Arsenic and Affects Distribution and Retention of Orally Administered Arsenate

    Get PDF
    The arsenic (+3 oxidation state) methyltransferase (As3mt) gene encodes a 43 kDa protein that catalyzes methylation of inorganic arsenic. Altered expression of AS3MT in cultured human cells controls arsenic methylation phenotypes, suggesting a critical role in arsenic metabolism. Because methylated arsenicals mediate some toxic or carcinogenic effects linked to inorganic arsenic exposure, studies of the fate and effects of arsenicals in mice which cannot methylate arsenic could be instructive. This study compared retention and distribution of arsenic in As3mt knockout mice and in wild-type C57BL/6 mice in which expression of the As3mt gene is normal. Male and female mice of either genotype received an oral dose of 0.5 mg of arsenic as arsenate per kg containing [73As]-arsenate. Mice were radioassayed for up to 96 hours after dosing; tissues were collected at 2 and 24 hours after dosing. At 2 and 24 hours after dosing, livers of As3mt knockouts contained a greater proportion of inorganic and monomethylated arsenic than did livers of C57BL/6 mice. A similar predominance of inorganic and monomethylated arsenic was found in the urine of As3mt knockouts. At 24 hours after dosing, As3mt knockouts retained significantly higher percentages of arsenic dose in liver, kidneys, urinary bladder, lungs, heart, and carcass than did C57BL/6 mice. Whole body clearance of [73As] in As3mt knockouts was substantially slower than in C57BL/6 mice. At 24 hours after dosing, As3mt knockouts retained about 50% and C57BL/6 mice about 6% of the dose. After 96 hours, As3mt knockouts retained about 20% and C57BL/6 mice retained less than 2% of the dose. These data confirm a central role for As3mt in metabolism of inorganic arsenic and indicate that phenotypes for arsenic retention and distribution are markedly affected by the null genotype for arsenic methylation, indicating a close linkage between the metabolism and retention of arsenicals

    Ficolin-2 Levels and FCN2 Haplotypes Influence Hepatitis B Infection Outcome in Vietnamese Patients

    Get PDF
    Human Ficolin-2 (L-ficolins) encoded by FCN2 gene is a soluble serum protein that plays an important role in innate immunity and is mainly expressed in the liver. Ficolin-2 serum levels and FCN2 single nucleotide polymorphisms were associated to several infectious diseases. We initially screened the complete FCN2 gene in 48 healthy individuals of Vietnamese ethnicity. We genotyped a Vietnamese cohort comprising of 423 clinically classified hepatitis B virus patients and 303 controls for functional single nucleotide polymorphisms in the promoter region (-986G>A, -602G>A, -4A>G) and in exon 8 (+6424G>T) by real-time PCR and investigated the contribution of FCN2 genotypes and haplotypes to serum Ficolin-2 levels, viral load and liver enzyme levels. Haplotypes differed significantly between patients and controls (Pβ€Š=β€Š0.002) and the haplotype AGGG was found frequently in controls in comparison to patients with hepatitis B virus and hepatocellular carcinoma (Pβ€Š=β€Š0.0002 and P<0.0001) conferring a protective effect. Ficolin-2 levels differed significantly between patients and controls (p<0.0001). Patients with acute hepatitis B had higher serum Ficolin-2 levels compared to other patient groups and controls.The viral load was observed to be significantly distributed among the haplotypes (Pβ€Š=β€Š0.04) and the AAAG haplotype contributed to higher Ficolin-2 levels and to viral load. Four novel single nucleotide polymorphisms in introns (-941G>T, -310G>A, +2363G>A, +4882G>A) and one synonymous mutation in exon 8 (+6485G>T) was observed. Strong linkage was found between the variant -986G>A and -4A>G. The very first study on Vietnamese cohort associates both Ficolin-2 serum levels and FCN2 haplotypes to hepatitis B virus infection and subsequent disease progression

    Transcription Factor SP4 Is a Susceptibility Gene for Bipolar Disorder

    Get PDF
    The Sp4 transcription factor plays a critical role for both development and function of mouse hippocampus. Reduced expression of the mouse Sp4 gene results in a variety of behavioral abnormalities relevant to human psychiatric disorders. The human SP4 gene is therefore examined for its association with both bipolar disorder and schizophrenia in European Caucasian and Chinese populations respectively. Out of ten SNPs selected from human SP4 genomic locus, four displayed significant association with bipolar disorder in European Caucasian families (rs12668354, pβ€Š=β€Š0.022; rs12673091, pβ€Š=β€Š0.0005; rs3735440, pβ€Š=β€Š0.019; rs11974306, pβ€Š=β€Š0.018). To replicate the genetic association, the same set of SNPs was examined in a Chinese bipolar case control sample. Four SNPs displayed significant association (rs40245, pβ€Š=β€Š0.009; rs12673091, pβ€Š=β€Š0.002; rs1018954, pβ€Š=β€Š0.001; rs3735440, pβ€Š=β€Š0.029), and two of them (rs12673091, rs3735440) were shared with positive SNPs from European Caucasian families. Considering the genetic overlap between bipolar disorder and schizophrenia, we extended our studies in Chinese trios families for schizophrenia. The SNP7 (rs12673091, pβ€Š=β€Š0.012) also displayed a significant association. The SNP7 (rs12673091) was therefore significantly associated in all three samples, and shared the same susceptibility allele (A) across all three samples. On the other hand, we found a gene dosage effect for mouse Sp4 gene in the modulation of sensorimotor gating, a putative endophenotype for both schizophrenia and bipolar disorder. The deficient sensorimotor gating in Sp4 hypomorphic mice was partially reversed by the administration of dopamine D2 antagonist or mood stabilizers. Both human genetic and mouse pharmacogenetic studies support Sp4 gene as a susceptibility gene for bipolar disorder or schizophrenia. The studies on the role of Sp4 gene in hippocampal development may provide novel insights for the contribution of hippocampal abnormalities in these psychiatric disorders
    • …
    corecore