9,393 research outputs found

    THE ATTITUDES OF OLDER SOUTH AFRICANS TOWARDS EUTHANASIA

    Get PDF
    The purpose of this study was to determine the attitudes of older South African adults (65 years and older) towards euthanasia. The subjects of the study were people 65 years of age and older who resided in homes for the aged within the rural and urban areas of the Cape Town Metropolis. An equal number of subjects from the African, Coloured and European communities were randomly selected. A biographical questionnaire, the Euthanasia Attitude Scale and the Purpose In Life Test were administered. The influence of four variables – namely age, ethnicity, meaning in life and health – was investigated. A Pearson correlation coefficient analysis and a one-way ANOVA analysis were used. Age was the only variable found to have a significant correlation with euthanasia. The findings are discussed and certain recommendations are made

    Generation and Characterization of a genetic zebrafish model of SMA carrying the human SMN2 gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Animal models of human diseases are essential as they allow analysis of the disease process at the cellular level and can advance therapeutics by serving as a tool for drug screening and target validation. Here we report the development of a complete genetic model of spinal muscular atrophy (SMA) in the vertebrate zebrafish to complement existing zebrafish, mouse, and invertebrate models and show its utility for testing compounds that alter <it>SMN2 </it>splicing.</p> <p>Results</p> <p>The human motoneuron disease SMA is caused by low levels, as opposed to a complete absence, of the survival motor neuron protein (SMN). To generate a true model of SMA in zebrafish, we have generated a transgenic zebrafish expressing the human <it>SMN2 </it>gene (<it>hSMN2</it>), which produces only a low amount of full-length SMN, and crossed this onto the <it>smn</it><sup>-/- </sup>background. We show that human <it>SMN2 </it>is spliced in zebrafish as it is in humans and makes low levels of SMN protein. Moreover, we show that an antisense oligonucleotide that enhances correct <it>hSMN2 </it>splicing increases full-length <it>hSMN </it>RNA in this model. When we placed this transgene on the <it>smn </it>mutant background it rescued the neuromuscular presynaptic SV2 defect that occurs in <it>smn </it>mutants and increased their survival.</p> <p>Conclusions</p> <p>We have generated a transgenic fish carrying the human <it>hSMN2 </it>gene. This gene is spliced in fish as it is in humans and mice suggesting a conserved splicing mechanism in these vertebrates. Moreover, antisense targeting of an intronic splicing silencer site increased the amount of full length SMN generated from this transgene. Having this transgene on the <it>smn </it>mutant fish rescued the presynaptic defect and increased survival. This model of zebrafish SMA has all of the components of human SMA and can thus be used to understand motoneuron dysfunction in SMA, can be used as an vivo test for drugs or antisense approaches that increase full-length SMN, and can be developed for drug screening.</p

    Absence of gemin5 from SMN complexes in nuclear Cajal bodies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spinal muscular atrophy is caused by reduced levels of the survival of motor neurons (SMN) protein. SMN is found in large complexes with Sm proteins and at least eight other proteins, including seven "gemins". These complexes are involved in the assembly of snRNPs in the cytoplasm and their transport into the nucleus, but the precise roles of the individual protein components are largely unknown.</p> <p>Results</p> <p>We have investigated the subcellular distribution of gemins using novel antibodies against gemins 3–7, and existing mAbs against SMN, gemin2, unrip, fibrillarin and profilin II. Most gemins were equally distributed between nuclear and cytoplasmic fractions of HeLa cells, but gemin5 and unrip were more abundant in the cytoplasm. In a cytoplasmic extract obtained by mild disruption of HeLa cells, nearly all the SMN and gemins 2–4 were in large complexes, but most of the gemin5 sedimented separately with a lower S value. Most of the unrip sedimented with gemins 6 and 7 near the top of the sucrose density gradients, separate from both SMN and gemin5. Anti-SMN mAbs pulled down gemin5 from cytoplasmic extracts, but not from nuclear extracts, and gemin5 did not co-sediment with large SMN complexes in nuclear extracts. These data suggest that gemin5 is easily detached from SMN-gemin complexes in the nucleus. By immuno-histochemistry, gemin5 was rarely detectable in nuclear gems/Cajal bodies, although it was accessible to antibody and easily detectable when present. This suggests that gemin5 is normally absent from SMN complexes in these nuclear storage sites.</p> <p>Conclusion</p> <p>We conclude that SMN complexes usually exist without gemin5 in nuclear gems/Cajal bodies. Gemin5 is believed to be involved in capturing snRNA into SMN complexes in the cytoplasm for transport into the nucleus. We hypothesize that gemin5, though present in the nucleus, is no longer needed for SMN complex function during the time these complexes are stored in gems/Cajal bodies.</p

    An alternative approach to water regulations for public health protection at bathing beaches

    Get PDF
    This is the final version of the article. Available from Hindawi Publishing Corporation via the DOI in this record.New approaches should be considered as the US Environmental Protection Agency (EPA) moves rapidly to develop new beach monitoring guidelines by the end of 2012, as these guidelines serve as the basis by which states and territories with coasts along the oceans and Great Lakes can then develop and implement monitoring programs for recreational waters. We describe and illustrate one possible approach to beach regulation termed as the "Comprehensive Toolbox within an Approval Process (CTBAP)." The CTBAP consists of three components. The first is a "toolbox" consisting of an inventory of guidelines on monitoring targets, a series of measurement techniques, and guidance to improve water quality through source identification and prevention methods. The second two components are principles of implementation. These include first, "flexibility" to encourage and develop an individualized beach management plan tailored to local conditions and second, "consistency" of this management plan to ensure a consistent national level of public health protection. The results of this approach are illustrated through a case study at a well-studied South Florida recreational marine beach. This case study explores different monitoring targets based on two different health endpoints (skin versus gastrointestinal illness) and recommends a beach regulation program for the study beach that focuses predominately on source prevention.This study was funded in part by the National Science Foundation (NSF) and the National Institute of Environmental Health Sciences (NIEHS) Oceans and Human Health Center at the University of Miami Rosenstiel School (NSF 0CE0432368/0911373) and (NIEHS P50 ES12736); an NSF REU in Oceans and Human Health; and ESF and ERDF Convergence funding to the European Centre for Environment and Human Health (University of Exeter)

    Discrete R-symmetries and Anomaly Universality in Heterotic Orbifolds

    Get PDF
    We study discrete R-symmetries, which appear in 4D low energy effective field theory derived from hetetoric orbifold models. We derive the R-symmetries directly from geometrical symmetries of orbifolds. In particular, we obtain the corresponding R-charges by requiring that the couplings be invariant under these symmetries. This allows for a more general treatment than the explicit computations of correlation functions made previously by the authors, including models with discrete Wilson lines, and orbifold symmetries beyond plane-by-plane rotational invariance. Surprisingly, for the cases covered by earlier explicit computations, the R-charges differ from the previous result. We study the anomalies associated with these R-symmetries, and comment on the results.Comment: 21 pages, 2 figures. Minor changes, typos corrected. Matches JHEP published versio

    The Influence of Physiological Status on age Prediction of Anopheles Arabiensis Using Near Infra-red spectroscopy

    Get PDF
    Determining the age of malaria vectors is essential for evaluating the impact of interventions that reduce the survival of wild mosquito populations and for estimating changes in vectorial capacity. Near infra-red spectroscopy (NIRS) is a simple and non-destructive method that has been used to determine the age and species of Anopheles gambiae s.l. by analyzing differences in absorption spectra. The spectra are affected by biochemical changes that occur during the life of a mosquito and could be influenced by senescence and also the life history of the mosquito, i.e., mating, blood feeding and egg-laying events. To better understand these changes, we evaluated the influence of mosquito physiological status on NIR energy absorption spectra. Mosquitoes were kept in individual cups to permit record keeping of each individual insect’s life history. Mosquitoes of the same chronological age, but at different physiological stages, were scanned and compared using cross-validations. We observed a slight trend within some physiological stages that suggest older insects tend to be predicted as being physiologically more mature. It was advantageous to include mosquitoes of different chronological ages and physiological stages in calibrations, as it increases the robustness of the model resulting in better age predictions. Progression through different physiological statuses of An. arabiensis influences the chronological age prediction by the NIRS. Entomologists that wish to use NIR technology to predict the age of field-caught An. gambiae s.l from their study area should use a calibration developed from their field strain using mosquitoes of diverse chronological ages and physiological stages to increase the robustness and accuracy of the predictions.\u

    Applicability of an integrated moving sponge biocarrier-osmotic membrane bioreactor MD system for saline wastewater treatment using highly salt-tolerant microorganisms

    Full text link
    © 2017 Elsevier B.V. Osmotic membrane bioreactors (OsMBRs) are a recent breakthrough technology designed to treat wastewater. Nevertheless, their application in high-salinity wastewater treatment is not widespread because of the effects of saline conditions on microbial community activity. In response, this study developed an integrated sponge biocarrier-OsMBR system using highly salt-tolerant microorganisms for treating saline wastewater. Results showed that the sponge biocarrier-OsMBR obtained an average water flux of 2 L/m2 h during a 92-day operation when 1 M MgCl2 was used as the draw solution. The efficiency in removing dissolved organic compounds from the proposed system was more than 99%, and nutrient rejection was close to 100%, indicating excellent performance in simultaneous nitrification and denitrification processes in the biofilm layer on the carriers. Moreover, salt-tolerant microorganisms in the sponge biocarrier-OsMBR system worked efficiently in salt concentrations of 2.4%. A polytetrafluoroethylene MD membrane (pores = 0.45 μm) served to regenerate the diluted draw solution in the closed-loop system and produce high-quality water. The moving sponge biocarrier-OsMBR/MD hybrid system demonstrated its potential to treat salinity wastewater treatment, with 100% nutrient removal and 99.9% conductivity rejection

    Direct photonic coupling of a semiconductor quantum dot and a trapped ion.

    Get PDF
    Coupling individual quantum systems lies at the heart of building scalable quantum networks. Here, we report the first direct photonic coupling between a semiconductor quantum dot and a trapped ion and we demonstrate that single photons generated by a quantum dot controllably change the internal state of a Yb^{+} ion. We ameliorate the effect of the 60-fold mismatch of the radiative linewidths with coherent photon generation and a high-finesse fiber-based optical cavity enhancing the coupling between the single photon and the ion. The transfer of information presented here via the classical correlations between the σ_{z} projection of the quantum-dot spin and the internal state of the ion provides a promising step towards quantum-state transfer in a hybrid photonic network.We acknowledge support by the University of Cambridge, the Alexander-von-Humboldt Stiftung, EPSRC (EP/H005676/1), the European Research Council (Grant numbers 240335 and 617985), EU-FP7 Marie Curie Initial Training Networks COMIQ and S3NANO.This is the accepted manuscript. The final version is available at http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.123001

    Effective dimensionality of the Portevin - Le Chatelier effect

    Full text link
    Tensile tests have been carried out by deforming polycrystalline samples of substitutional Al-2.5%Mg alloy at room temperature at a range of strain rates. The Portevin - Le Chatelier (PLC) effect was observed. From an analysis of the experimental stress versus time series data we have inferred that the dynamics of the PLC effect in a local finite time is controlled by a finite number of degrees of freedom and this effective dimension becomes reduced with increasing strain.Comment: 12 pages, 5 figure

    Non-Abelian discrete gauge symmetries in 4d string models

    Full text link
    We study the realization of non-Abelian discrete gauge symmetries in 4d field theory and string theory compactifications. The underlying structure generalizes the Abelian case, and follows from the interplay between gaugings of non-Abelian isometries of the scalar manifold and field identifications making axion-like fields periodic. We present several classes of string constructions realizing non-Abelian discrete gauge symmetries. In particular, compactifications with torsion homology classes, where non-Abelianity arises microscopically from the Hanany-Witten effect, or compactifications with non-Abelian discrete isometry groups, like twisted tori. We finally focus on the more interesting case of magnetized branes in toroidal compactifications and quotients thereof (and their heterotic and intersecting duals), in which the non-Abelian discrete gauge symmetries imply powerful selection rules for Yukawa couplings of charged matter fields. In particular, in MSSM-like models they correspond to discrete flavour symmetries constraining the quark and lepton mass matrices, as we show in specific examples.Comment: 58 pages; minor typos corrected and references adde
    corecore