71 research outputs found

    The impact of the Covid-19 pandemic on the resilience of the labour market in the Polish-German borderland

    Get PDF
    The COVID-19 pandemic, as an external factor, quite strongly disrupted the existing trends in the evolution of employment in the Polish-German borderland. The objective of the article is to analyse how resilient Polish and German municipalities are to the COVID-19 pandemic. Border regions, due to their specificities, are characterized by weaker resilience to negative external factors, which meant that the COVID-19 pandemic had a detrimental effect and caused an upturn in unemployment. The empirical part of the study concerns the Polish-German borderland as a clear example of the described tendencies. The study uses the counterfactual before-after comparison method. The novelty in this approach to the study of this hypothetical rate of unemployment involves filling the gap in the literature regarding research of cross border regions, while also developing the existing approaches in the research method used. The results of the survey indicate that the unemployment rate in the Polish-German borderland area has risen (after and due to the pandemic). There are some major differences in how the pandemic has impacted the labour market. Considering the counterfactual approach used, this difference can be described as the impact of the COVID-19 pandemic

    Rhenium(I) conjugates as tools for tracking cholesterol in cells

    Get PDF
    Cholesterol is vital to control membrane integrity and fluidity, but is also a precursor to produce steroid hormones, bile acids, and vitamin D. Consequently, altered cholesterol biology has been linked to many diseases, including metabolic syndromes and cancer. Defining the intracellular pools of cholesterol and its trafficking within cells is essential to understand both normal cell physiology and mechanisms of pathogenesis. We have synthesized a new cholesterol mimic (ReTEGCholestanol), comprising a luminescent rhenium metal complex and a cholestanol targeting unit, linked using a tetraethylene glycol (TEG) spacer. ReTEGCholestanol demonstrated favourable imaging properties and improved water solubility when compared to a cholesterol derivative, and structurally related probes lacking the TEG linker. A non-malignant and three malignant prostate cell lines were used to characterize the uptake and intracellular distribution of ReTEGCholestanol. The ReTEGCholestanol complex was effectively internalized and mainly localized to late endosomes/lysosomes in non-malignant PNT1a cells, while in prostate cancer cells it also accumulated in early endosomes and multivesicular bodies, suggesting disturbed cholesterol biology in the malignant cells. The ReTEGCholestanol is a novel imaging agent for visualizing endosomal uptake and trafficking, which may be used to define cholesterol related biology including membrane integration and altered lipid trafficking/processing

    Dendritic glycopolymers based on dendritic polyamine scaffolds: view on their synthetic approaches, characteristics and potential for biomedical applications

    Get PDF
    In this review we highlight the potential for biomedical applications of dendritic glycopolymers based on polyamine scaffolds. The complex interplay of the molecular characteristics of the dendritic architectures and their specific interactions with various (bio)molecules are elucidated with various examples. A special role of the individual sugar units attached to the dendritic scaffolds and their density is identified, which govern ionic and H-bond interactions, and biological targeting, but to a large extent are also responsible for the significantly reduced toxicity of the dendritic glycopolymers compared to their polyamine scaffolds. Thus, the application of dendritic glycopolymers in drug delivery systems for gene transfection but also as therapeutics in neurodegenerative diseases has great promisePublikacja w ramach programu Royal Society of Chemistry "Gold for Gold" 2014 finansowanego przez Uniwersytet Łódzk

    Prediction of Prostate Cancer Biochemical and Clinical Recurrence Is Improved by IHC-Assisted Grading Using Appl1, Sortilin and Syndecan-1.

    Get PDF
    Gleason scoring is used within a five-tier risk stratification system to guide therapeutic decisions for patients with prostate cancer. This study aimed to compare the predictive performance of routine H&E or biomarker-assisted ISUP (International Society of Urological Pathology) grade grouping for assessing the risk of biochemical recurrence (BCR) and clinical recurrence (CR) in patients with prostate cancer. This retrospective study was an assessment of 114 men with prostate cancer who provided radical prostatectomy samples to the Australian Prostate Cancer Bioresource between 2006 and 2014. The prediction of CR was the primary outcome (median time to CR 79.8 months), and BCR was assessed as a secondary outcome (median time to BCR 41.7 months). The associations of (1) H&E ISUP grade groups and (2) modified ISUP grade groups informed by the Appl1, Sortilin and Syndecan-1 immunohistochemistry (IHC) labelling were modelled with BCR and CR using Cox proportional hazard approaches. IHC-assisted grading was more predictive than H&E for BCR (C-statistic 0.63 vs. 0.59) and CR (C-statistic 0.71 vs. 0.66). On adjusted analysis, IHC-assisted ISUP grading was independently associated with both outcome measures. IHC-assisted ISUP grading using the biomarker panel was an independent predictor of individual BCR and CR. Prospective studies are needed to further validate this biomarker technology and to define BCR and CR associations in real-world cohorts.Jessica M. Logan ... Lisa M. Butler ... Douglas A. Brooks ... et al

    Promising Low-Toxicity of Viologen-Phosphorus Dendrimers against Embryonic Mouse Hippocampal Cells

    No full text
    A new class of viologen-phosphorus dendrimers (VPDs) has been recently shown to possess the ability to inhibit neurodegenerative processes in vitro. Nevertheless, in the Central Nervous Systems domain, there is little information on their impact on cell functions, especially on neuronal cells. In this work, we examined the influence of two VPD (VPD1 and VPD3) of zero generation (G0) on murine hippocampal cell line (named mHippoE-18). Extended analyses of cell responses to these nanomolecules comprised cytotoxicity test, reactive oxygen species (ROS) generation studies, mitochondrial membrane potential (ΔΨm) assay, cell death detection, cell morphology assessment, cell cycle studies, as well as measurements of catalase (CAT) activity and glutathione (GSH) level. The results indicate that VPD1 is more toxic than VPD3. However, these two tested dendrimers did not cause a strong cellular response, and induced a low level of apoptosis. Interestingly, VPD1 and VPD3 treatment led to a small decline in ROS level compared to untreated cells, which correlated with slightly increased catalase activity. This result indicates that the VPDs can indirectly lower the level of ROS in cells. Summarising, low-cytotoxicity on mHippoE-18 cells together with their ability to quench ROS, make the VPDs very promising nanodevices for future applications in the biomedical field as nanocarriers and/or drugs per se

    A Cav3.2/Stac1 molecular complex controls T-type channel expression at the plasma membrane

    Full text link
    Photograph of Pawnee Artifacts housed at the Oklahoma Historical Society

    In utero substrate restriction by placental insufficiency or maternal undernutrition decreases optical redox ratio in foetal perirenal fat

    No full text
    Intrauterine growth restriction (IUGR) can result from reduced delivery of substrates, including oxygen and glucose, during pregnancy and may be caused by either placental insufficiency or maternal undernutrition. As a consequence of IUGR, there is altered programming of adipose tissue and this can be associated with metabolic diseases later in life. We have utilised two sheep models of IUGR, placental restriction and late gestation undernutrition, to determine the metabolic effects of growth restriction on foetal perirenal adipose tissue (PAT). Two-photon microscopy was employed to obtain an optical redox ratio, which gives an indication of cell metabolism. PAT of IUGR foetuses exhibited higher metabolic activity, altered lipid droplet morphology, upregulation of cytochrome c oxidase subunit genes and decreased expression of genes involved in growth and differentiation. Our results indicate that there are adaptations in PAT of IUGR foetuses that might be protective and ensure survival in response to an IUGR insult.Joanna Lazniewska, Jack R.T. Darby, Stacey L. Holman, Alexandra Sorvina, Sally E. Plush, Massimiliano Massi, Doug A. Brooks, Janna L. Morriso

    Mechanism of Cationic Phosphorus Dendrimer Toxicity against Murine Neural Cell Lines

    No full text
    International audienceThe purpose of this manuscript is to study the toxic responses against murine embryonic hippocampal cells (mHippoE-18) and neuroblastoma cells (N2a) to treatment with cationic phosphorus dendrimers (CPD). Two low generations of CPD—generation 2 (G2) and generation 3 (G3)—were applied to cell cultures to monitor events leading to either apoptosis or necrosis. These processes were analyzed using several bioassays, which included the detection of reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm) alterations, morphology changes, apoptotic and dead cells, cytochrome c (Cyt c) release, caspase 3 activity, DNA fragmentation, as well as changes in cell cycle phases distribution. The results showed that CPD became highly cytotoxic at concentrations above 1 μM and at 0.7 μM in the case of G3 for mHippoE-18 cells. The toxicity was manifested by a pronounced decrease in cell viability, which is correlated with disturbances in cellular activities, such as massive ROS generation. The breakdown of cellular processes leads mainly to the necrotic cell death. Our findings are of high importance in the context of further biomedical studies on CPD
    corecore