413 research outputs found

    Radio Observations of HD 80606 Near Planetary Periastron

    Full text link
    This paper reports Very Large Array observations at 325 and 1425 MHz (90cm and 20cm) during and near the periastron passage of HD 80606b on 2007 November 20. We obtain flux density limits (3-sigma) of 1.7 mJy and 48 microJy at 325 and 1425 MHz, respectively, equivalent to planetary luminosity limits of 2.3 x 10^{24} erg/s and 2.7 x 10^{23} erg/s. These are well above the Jovian value (at 40 MHz) of 2 x 10^{18} erg/s. The motivation for these observations was that the planetary magnetospheric emission is driven by a stellar wind-planetary magnetosphere interaction so that the planetary luminosity would be elevated. Near periastron, HD 80606b might be as much as 3000 times more luminous than Jupiter. Recent transit observations of HD 80606b provide stringent constraints on the planetary mass and radius, and, because of the planet's highly eccentric orbit, its rotation period is likely to be "pseudo-synchronized" to its orbital period, allowing a robust estimate of the former. We are able to make robust estimates of the emission frequency of the planetary magnetospheric emission and find it to be around 60--90 MHz. We compare HD 80606b to other high-eccentricity systems and assess the detection possibilities for both near-term and more distant future systems. Of the known high eccentricity planets, only HD 80606b is likely to be detectable, as HD 20782B b and HD 4113b are both likely to have weaker magnetic field strengths. Both the forthcoming "EVLA low band" system and the Low Frequency Array may be able to improve upon our limits for HD 80606b, and do so at a more optimum frequency. If the low-frequency component of the Square Kilometre Array (SKA-lo) and a future lunar radio array are able to approach their thermal noise limits, they should be able to detect an HD 80606b-like planet, unless the planet's luminosity increases by substantially less than a factor of 3000.Comment: 9 pages; accepted for publication in A

    A Blind Search for Magnetospheric Emissions from Planetary Companions to Nearby Solar-type Stars

    Full text link
    This paper reports a blind search for magnetospheric emissions from planets around nearby stars. Young stars are likely to have much stronger stellar winds than the Sun, and because planetary magnetospheric emissions are powered by stellar winds, stronger stellar winds may enhance the radio luminosity of any orbiting planets. Using various stellar catalogs, we selected nearby stars (<~ 30 pc) with relatively young age estimates (< 3 Gyr). We constructed different samples from the stellar catalogs, finding between 100 and several hundred stars. We stacked images from the 74-MHz (4-m wavelength) VLA Low-frequency Sky Survey (VLSS), obtaining 3\sigma limits on planetary emission in the stacked images of between 10 and 33 mJy. These flux density limits correspond to average planetary luminosities less than 5--10 x 10^{23} erg/s. Using recent models for the scaling of stellar wind velocity, density, and magnetic field with stellar age, we estimate scaling factors for the strength of stellar winds, relative to the Sun, in our samples. The typical kinetic energy carried by the stellar winds in our samples is 15--50 times larger than that of the Sun, and the typical magnetic energy is 5--10 times larger. If we assume that every star is orbited by a Jupiter-like planet with a luminosity larger than that of the Jovian decametric radiation by the above factors, our limits on planetary luminosities from the stacking analysis are likely to be a factor of 10--100 above what would be required to detect the planets in a statistical sense. Similar statistical analyses with observations by future instruments, such as the Low Frequency Array (LOFAR) and the Long Wavelength Array (LWA), offer the promise of improvements by factors of 10--100.Comment: 11 pages; AASTeX; accepted for publication in A

    Planetary Bistatic Radar

    Get PDF
    Planetary radar observations offer the potential for probing the properties of characteristics of solid bodies throughout the inner solar system and at least as far as the orbit of Saturn. In addition to the direct scientific value, precise orbital determinations can be obtained from planetary radar observations, which are in turn valuable for mission planning or spacecraft navigation and planetary defense. The next-generation Very Large Array would not have to be equipped with a transmitter to be an important asset in the world's planetary radar infrastructure. Bistatic radar, in which one antenna transmits (e.g., Arecibo or Goldstone) and another receives, are used commonly today, with the Green Bank Telescope (GBT) serving as a receiver. The improved sensitivity of the ngVLA relative to the GBT would improve the signal-to-noise ratios on many targets and increase the accessible volume specifically for asteroids. Goldstone-ngVLA bistatic observations would have the potential of rivaling the sensitivity of Arecibo, but with much wider sky access.Comment: 11 pages, 2 figures, To be published in the ASP Monograph Series, "Science with a Next-Generation VLA", ed. E. J. Murphy (ASP, San Francisco, CA

    The square kilometre array

    Get PDF

    Prospects for probing strong gravity with a pulsar-black hole system

    Full text link
    The discovery of a pulsar (PSR) in orbit around a black hole (BH) is expected to provide a superb new probe of relativistic gravity and BH properties. Apart from a precise mass measurement for the BH, one could expect a clean verification of the dragging of space-time caused by the BH spin. In order to measure the quadrupole moment of the BH for testing the no-hair theorem of general relativity (GR), one has to hope for a sufficiently massive BH. In this respect, a PSR orbiting the super-massive BH in the center of our Galaxy would be the ultimate laboratory for gravity tests with PSRs. But even for gravity theories that predict the same properties for BHs as GR, a PSR-BH system would constitute an excellent test system, due to the high grade of asymmetry in the strong field properties of these two components. Here we highlight some of the potential gravity tests that one could expect from different PSR-BH systems, utilizing present and future radio telescopes, like FAST and SKA.Comment: Proceedings of IAUS 291 "Neutron Stars and Pulsars: Challenges and Opportunities after 80 years", J. van Leeuwen (ed.); 6 pages, 3 figure

    A real-time semi-quantitative RT–PCR assay demonstrates that the pilE sequence dictates the frequency and characteristics of pilin antigenic variation in Neisseria gonorrhoeae

    Get PDF
    A semi-quantitative real-time RT–PCR assay was designed to measure gonococcal pilin antigenicvariation (SQ-PCR Av assay). This assay employs 17 hybridization probe sets that quantitate subpopulations of pilin transcripts carrying different silent pilin copy sequences and one set that detects total pilE transcript levels. Mixtures of a DNA standard carrying the silent copy being detected and a clone encoding the starting pilE sequence, which is the majority pilE template, provided amplification curves that closely matched the experimental data and allowed an analysis of the contribution of different silent pilin copies to variation. The SQ-PCR Av assay was verified using DNA sequence analysis to demonstrate that this methodology allowed an accurate analysis of pilin variation. Both assays showed that with a specific starting pilE sequence, only a subset of the silent pilin copies recombine into pilE at a detectable level, and that this limited subset was reproducibly detected in replicate cultures. When an isogenic pilE sequence variant was examined using both assays, a new subset of silent copy sequences were detected recombining into pilE and the overall frequency of variation was increased. Thus, the parental pilE sequence influences the frequency of variation and the repertoire of pilin variants produced

    The Microarcsecond Sky and Cosmic Turbulence

    Full text link
    Radio waves are imprinted with propagation effects from ionized media through which they pass. Owing to electron density fluctuations, compact sources (pulsars, masers, and compact extragalactic sources) can display a wide variety of scattering effects. These scattering effects, particularly interstellar scintillation, can be exploited to provide *superresolution*, with achievable angular resolutions (<~ 1 microarcsecond) far in excess of what can be obtained by very long baseline interferometry on terrestrial baselines. Scattering effects also provide a powerful sub-AU probe of the microphysics of the interstellar medium, potentially to spatial scales smaller than 100 km, as well as a tracer of the Galactic distribution of energy input into the interstellar medium through a variety of integrated measures. Coupled with future gamma-ray observations, SKA observations also may provide a means of detecting fainter compact gamma-ray sources. Though it is not yet clear that propagation effects due to the intergalactic medium are significant, the SKA will either detect or place stringent constraints on intergalactic scattering.Comment: 20 pages, 8 figures in 8 PostScript files, to appear in "Science with the Square Kilometer Array," eds. C. Carilli and S. Rawlings, New Astronomy Reviews (Elsevier: Amsterdam
    • …
    corecore