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INV ITED
P A P E R

The Square Kilometre Array
This telescope, to be the largest in the world, will probe the evolution of black holes

as well as the basic properties, birth and death of the Universe.

By Peter E. Dewdney, Peter J. Hall, Richard T. Schilizzi, and T. Joseph L. W. Lazio

ABSTRACT | The Square Kilometre Array (SKA) will be an

ultrasensitive radio telescope, built to further the understand-

ing of the most important phenomena in the Universe,

including some pertaining to the birth and eventual death of

the Universe itself. Over the next few years, the SKA will make

the transition from an early formative to a well-defined design.

This paper outlines how the scientific challenges are translated

into technical challenges, how the application of recent

technology offers the potential of affordably meeting these

challenges, and how the choices of technology will ultimately

be made. The SKA will be an array of coherently connected

antennas spread over an area about 3000 km in extent, with an

aggregate antenna collecting area of up to 106 m2 at centimeter

and meter wavelengths. A key scientific requirement is the

ability to carry out sensitive observations of the sky over large

areas (surveys). The Bsurvey speed[ of the SKA will be enabled

by the application of the most up-to-date signal-processing

technology available. The SKA science impact will be widely felt

in astroparticle physics and cosmology, fundamental physics,

galactic and extragalactic astronomy, solar system science, and

astrobiology.

KEYWORDS | Aperture synthesis; digital correlator; digital data

transmission; digital signal processing; Fourier imaging; low-

noise amplifier; radio astronomy; radio telescope

I . INTRODUCTION

Advances in astronomy over the past decades have brought

the international community to the verge of charting a

complete history of the Universe. In order to achieve this

goal, the world community is pooling resources and ex-
pertise to design and construct powerful observatories that

will probe the entire electromagnetic spectrum, from radio to

gamma-rays, and even beyond the electromagnetic spectrum,

studying gravitational waves, cosmic rays, and neutrinos.

The Square Kilometre Array (SKA) will be one of these

telescopes, a radio telescope with an aperture of up to a

million square meters. The SKA was formulated from the

very beginning as an international, astronomer-led (Bgrass
roots[) initiative. The International Union for Radio Science

(URSI) established a working group in 1993 to study the

next-generation radio wavelength observatory. Since that

time, the effort has grown to comprise 19 countries and

55 institutes. As many as seven different initial technical

concepts for the SKA have been narrowed substantially.

After a rigorous process, two sites, in the Karoo region of

central South Africa and in the state of Western Australia,
were identified as suitable for much of the SKA’s intended

wavelength range (see below). Fifteen funding agencies

now regularly discuss SKA development and funding

options. The project timeline has the telescope operation-

al below 10 GHz by 2022.

At the highest level of generalization all telescopes are

designed to tackle, in the wavebands at which they oper-

ate, the most important problems in astronomy, especially
those for which technology can provide new opportunities

for advancement. The U.S. Decadal Review Panel for

2000–2010 expressed these goals succinctly in their

report, Astronomy and Astrophysics in the New Millennium
[1], as follows.

• Determine the large-scale properties of the

universe: the amount, distribution, and nature of

its matter and energy, its age, and the history of its
expansion.

• Study the dawn of the modern universe, when the

first stars and galaxies formed.
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• Understand the formation and evolution of black
holes of all sizes.

• Study the formation of stars and their planetary

systems, and the birth and evolution of giant and

terrestrial planets.

• Understand how the astronomical environment

affects Earth.

Similar goals are identified in similar reports from other

countries and regions, such as the recent European
AstroNet process.

Radio-wave observations address these goals in a way

that is both unique and complementary to that provided in

other wavebands. Observations and technical develop-

ments in radio astronomy have led to several Nobel prizes

in physics. These successes were largely serendipitous but

flowed from novel applications of technology; they are also

attributable to the penetrating power of centimeter and
meter waves to reveal phenomena and objects in the

Universe that would otherwise be hidden, and to Nature’s

propensity to generate radio waves almost everywhere.

Moreover, telescopes in these bands can be designed with

extraordinary capabilitiesVlarge imaging fields of view,

polarization measurement, high spatial and spectral reso-

lutions, and high sensitivity. Using recent and emerging

technology, all of these attributes may be achieved simul-
taneously. Although the precise range of wavelengths has

not yet been determined, the SKA will eventually produce

images and other data over wavelengths from �4.3 m

(70 MHz) to �1 cm (30 GHz).

Of exceptional scientific significance in radio astron-

omy are: the ability to utilize optically thin spectral lines as

tracers of many non stellar components of the universe,

especially the fundamentally important 21-cm spectral line
of hydrogen, the most abundant element; the ability to

probe physics in extreme environments, such as by high-

precision timing of the arrival times of pulses from radio

pulsars; the exploitation of astrophysical masers found in

the spectral lines of molecules; the sensing of magnetic

fields in the Universe; and the tracing of almost ubiquitous

interaction of high-energy electrons with magnetic fields

to produce synchrotron radiation in stars, galaxies, and
clusters of galaxies.

In order to make progress in modern astronomy, the

SKA must be designed to observe these phenomena

throughout the Universe. The expansion of the Universe

both weakens the radiation and causes the wavelength of

observation to be lengthened. The red-shift z is defined by

1þ z ¼ �observed=�emitted, where �observed is the wave-

length measured by the observer and �emitted is the
wavelength emitted by a distant object in the Universe. In

the nearby Universe, the red-shift (Bdoppler[) is given

approximately by the Hubble law z ¼ v=c, where v is the

velocity of recession as the Universe expands and c is the

speed of light. In the distant Universe, a similar but more

complex relation takes into account the General Theory of

Relativity.

The enormous capabilities of radio telescopes come at a
price: radio emission in astrophysical situations is weak,

and very sensitive telescopes are needed to carry out ob-

servations of the phenomena described above, particularly

in the early Universe. To achieve the main science goals

related to early Universe studies, the SKA will have to be

much more sensitive than the current generation of radio

telescopes in the centimeter and meter wave bands. These

goals are fully described in the SKA science case [2]. What
follows is a section on what new science is anticipated and

how that translates into technical requirements; a section

on potential design solutions; a section on important tech-

nical and cost challenges that must be met; and a section

on how the project may proceed to make technology and

design decisions. At this stage of the project, there is no

direct route to a simple solution. Many different aspects

must be considered in parallel and even iteratively.

II . DESIGN REQUIREMENTS AND
MOTIVATION FOR NEW TECHNOLOGIES

The SKA will utilize radio-telescope design techniques

developed over the past four to five decades. The most

sophisticated concept, aperture synthesis [3], is an appli-

cation of the Van Cittert–Zernike theorem [3, Ch. 14] and
amounts to spatial, spectral, and temporal sampling of the

incoming radio-radiation field so as to match the expected

structure of the field in those three domains. In addition,

careful attention must be paid to rejecting extraneous,

man-made signals [radio-frequency interference (RFI)].

The manifestation of these concepts as a ground-based

radio telescope requires an array of antennas and receivers

covering a large area on the ground and configured so as
to provide the required spatial sampling or telescope

resolution. The signals from the antennas, including

appropriately represented amplitude and phase, are cross-

correlated in pairs and integrated to reduce noise. These

data can be used to reconstruct the original brightness

distribution, spectra at each point in the sky, and some-

times spectral and spatial variations with time.

For several decades, radio telescopes and telescope ar-
rays have been limited to apertures of about 104 m2 (with

the exception of the Arecibo radio telescope, a large

special-purpose radio telescope consisting of a single aper-

ture whose resolution is very limited), constraining, for

instance, studies of the 21-cm hydrogen emission from

galaxies to the nearby universe (z � 0:2 [2]). Contempo-

raneous with the astronomical discoveries in the second

half of the twentieth century have been technological dev-
elopments that offer a path to substantial improvements in

future radio astronomical measurements. Among the range

of improvements are mass production of large centimeter-

wavelength antennas, fiber optics for the transmission of

large volumes of data, high-speed digital signal processing

hardware for the analysis of the signals, and computational

improvements leading to massive processing and storage.
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These new technologies, enabling dramatically improved
survey speeds and other advances, can open up an enor-

mous volume of discovery space, providing access to many

new celestial phenomena and structures, including three-

dimensional mapping of the web of hydrogen gas through

much of cosmic history ðz � 2Þ.
The detailed technical design requirements for the SKA

must be derived from its science goals but constrained by

other aspects of design, such as feasibility and cost. This is
a complex problem with no unique solution. Indispensible

to the overall science case [2] are five key science projects

(KSPs); each KSP represents an unanswered question in

fundamental physics or astrophysics and is either science

unique to the SKA or for which the SKA plays a key role.

The SKA approach is to distill the science case into a

design reference mission (DRM) [4], including the KSPs.

In a formal engineering sense, this is part of system
validation. (Are we building the right system?) It is

impossible to specify scientific performance succinctly as a

model or formula; thus it must be done as a series of

carefully selected, minimum set of case studies. The case

studies must be constructed so as to yield actual numbers

for key system performance indicators (e.g., system noise,

dynamic range, spatial frequency coverage, etc.), cover the

entire range of parameter space needed for the SKA and
take into account science priorities. This process does not

imply that the telescope is designed or optimized to carry

out these observations alone.

The utilization of new technologies is the enabling

factor needed to realize the science specifications em-

bodied by the DRM (i.e., to build a more capable telescope

at much lower cost). But clearly there are still cost/

performance tradeoffs. The DRM cannot be regarded as
immutableVscience priorities will have to be adjusted in

the face of evolving astronomy knowledge and cost pres-

sures, and the DRM modified accordingly. Cost is a major

factor forcing the SKA project towards new technologies

and architectures. The overall target budget is 1500 million

euros (2007). Reaching this target will require aggressive

manufacturing optimization and, most importantly, push-

ing the system design to capture functionality/cost gains in
data transmission, signal processing, computing, power

consumption, and related technologies.

Coverage of observation parameter space in the DRM is

critical. If there are gaps in the coverage of the DRM, those

gaps are likely to show up in the actual design. The case

studies are a series of mock surveys and observations suf-

ficient to define the Benvelope[ of technical specifications.

These envelope specifications jointly represent what has to
be built to accomplish the most difficult key science. Two

important case studies from the DRM are described below as

examples of the input to the detailed specification process.

1) Wide-Area Survey: Survey a large fraction of the sky

(> 50%) available to the SKA with the goals of 1) detecting

the HI-line from galaxies out to a red-shift of at least unity

(half the age of the Universe) and using them to trace
galaxy evolution and as a cosmological probe; 2) detecting

a large fraction of observable pulsars in the Milky Way, in

particular millisecond pulsars, with the objective of using

them to study gravitational waves; and 3) constructing a

large-scale Faraday rotation-measure grid in order to trace

magnetic fields in regions of thermal and non-thermal

emission.

2) Galactic Center: Detect radio pulsars near the central

supermassive black hole in the Milky Way Galaxy and mea-

sure the arrival times of their pulses in order to probe the

space–time environment of this supermassive black hole.

There is a danger that any set of case studies will cause

loss of generality in the design of the telescope. The overall

goals of the SKA are based on a philosophy, which has

proven effective for current large radio facilities, to provide
astronomers with powerful and flexible instruments for

research into all astrophysical phenomena that emit radio

waves. This statement of generality has been described as a

particular science goal, Bexploration of the unknown.[ This

aspect of the design process counteracts the tendency to

assume that the telescope is being designed only to carry

out the DRM case studies. At the same time, the flexibility

inherent in the marriage of radio engineering and new
signal-processing techniques offers unprecedented op-

portunities in making Bexperiment-like[ system configura-

tions available, often to multiple simultaneous users.

History shows that discovery science often flows from

such instruments. The final choice of major design param-

eters will balance flexibility with the need to accomplish

key science goals, constrained by cost and feasibility.

A. Technical Performance
The translation of the DRM into technical requirements

yields a small number of performance indicators, which guide

the design and motivates the development of new technol-

ogies. Table 1, adapted from [5], contains the list of KSPs

alongside the performance indicators required for each one.

Table 1 contains desirable specifications and will eventually

be refined in a confrontation with feasibility and cost.

1) Wavelength Coverage: As shown in Table 1, the SKA

must cover wavelengths from about 1 cm (30 GHz) to

4.3 m (70 MHz), more than two orders of magnitude. This

cannot be managed with a single antenna technology

when the sensitivity and efficiency requirements of the

SKA are also considered. Moreover, as discussed further in

Section IV-B and H, the site requirements at the extremes
of this frequency range, combined with antenna cost con-

siderations, indicate that an additional site for wavelengths

shorter than �3 cm (10 GHz) may be needed.

2) Staring Sensitivity: This is the sensitivity of the tele-

scope when pointed at a single direction on the sky. It is

the best measure of sensitivity when the angular extent of
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the radio emitting region is smaller than the instantaneous

field of view (FoV) of the telescope, typically defined by

the solid angle � over which the sensitivity of the antennas

is greater than 0.5 of the maximum sensitivity. The
strength of the weakest, unresolved (point-like) source

that can be detected in a given observing time is propor-

tional to Tsys=Ae, where Tsys is the system noise tem-

perature at the terminals of each antenna and Ae is the sum

of the effective areas of all antennas [3]. Telescope

sensitivity is proportional to the inverse of this quantity

Ae=Tsys. For the SKA, this must be at least 104 m2=K to

meet the science objectives. The observing time required
to detect such a source within the telescope’s FoV is pro-

portional to ðTsys=AeÞ2. The effective area is the physical

area multiplied by an efficiency factor less than one. For a

parabolic reflector antenna, the theoretically achievable

area is the physical area. As a comparison, the staring

sensitivity of the Expanded Very Large Array (EVLA) will

be �270m2=K.

3) Survey Speed: The rate at which an area of sky much

larger than the FoV can be surveyed for unresolved sources

stronger than a specified limit is proportional to the ratio

of � to the time required to detect a point-source of
specified strength ðAe=TsysÞ2�. This is called the survey

speed figure of merit (SSFoM) [5], and for the SKA this

must be at least 3� 109 deg2 m4 K�2 at wavelengths

longer than about 20 cm. In practice, the FoV may also be

limited by the rate at which data from a large area of sky

can be transmitted and processed (Section IV). Survey

speed has not historically been a design requirement for

most radio telescopes.

4) Array Configuration: This is the pattern of antennas on

the ground, which in turn determines the range of spatial

frequencies that the array can sample (see the Van Cittert–

Zernike theorem). Pairs of antennas are used in interfer-

ometer mode: close pairs sample low spatial frequencies

or coarse structure; distant pairs sample high spatial

Table 1 Science-Based Specifications for the SKA
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frequencies or fine structure. Some of the science targets,
such as the study of radio emission from the first galaxies,

require very high angular resolution (potentially as high as

several milliarcseconds). Simple Fourier analysis indicates

sampling with a two-dimensional configuration of an-

tennas spanning > 107 wavelengths or distances of

2000–3000 km are required at a wavelength of 20 cm.

In contrast, there are other science targets, such as galaxies

containing atomic hydrogen, that require the highest
sensitivity to objects that are 10 arcsec in size; thus it is

also important to locate the antennas within a 10 km

radius. In these latter observations, antennas located at

thousands of kilometers from the center are not only

insensitive to these spatial frequencies; if included, they

add unnecessary noise to the images. The Very Large Array

[6] addresses this problem on a smaller scale (35 km) by

using transportable antennas. However, the SKA, which
will need thousands of antennas to achieve the sensitivity

requirements, is unlikely to be able to use this method,

though a restricted version of this solution has not yet been

ruled out. A provisional distribution of collecting area in

the array configuration [5] is the following: 50% of the

collecting area will be located within a radius of 2.5 km of

the center of the array, a further 25% within 180 km of the

center, and the remaining 25% out to the maximum extent
of the array. Fig. 1 shows a schematic configuration with a

condensed central core and with the density of antennas
progressively reduced with distance from the core.

5) Bandwidth: The bandwidth affects two aspects of the

telescope’s performance. First, for continuum (broadband)

sources, the instantaneous bandwidth that can be accessed

and processed affects the final sensitivity as B1=2, where B

is the processed bandwidth [3]. Secondly, for spectral-line

observations, such as of the HI line, the band must be
broken into narrow spectral channels, and the sensitivity is

determined by how narrow the channels must be to

characterize the shape of the spectral lines. In this case,

the overall bandwidth affects how large a range in red-shift

can be observed instantaneously. The required number of

spectral channels is the ratio of the overall bandwidth to

the channel bandwidth. For other spectral-line observa-

tions, such as of the transitions of complex organic mole-
cules, the instantaneous bandwidth affects how many lines

can be studied and the efficiency of searching for new

lines. As an example of this possibility, at the lower end

of its tuning range, the EVLA will soon deliver octave

bandwidths at center frequencies from 1.5–6 GHz with

at least 16 000 channels across the band in each of two

polarizations.

6) Imaging and Spectral Dynamic Range: Imaging

dynamic range is the ratio of the brightest point in an

image to the root mean square fluctuations in a region of

the image devoid of real emission. These fluctuations could

be from a combination of system noise, instrumental arti-

facts, scattered radiation, or systematic errors that limit

the detection of weak emission. The SKA not only will

require high sensitivity to detect weak radio sources; it
must do so in the presence of relatively strong sources,

which will also be present in the FoV. A statistical analysis

of radio sources at a wavelength of 20 cm indicates that, in

each square degree of sky, there will be, on average, one

80 mJy source, while the target imaging noise level,

random fluctuations in the image, for long integrations

(staring times) will be at least 106 times smaller. Cali-

bration errors in the instrument are one mechanism by
which the signal from a strong source can obscure a weak

source, so achieving high dynamic range corresponds to

achieving accurate calibration (see Section IV-E). Thus the

imaging dynamic range requirements can be translated

into a specification for postimaging calibration accuracy.

Measuring the polarized component of the received

emission, important for tracing magnetic fields, is

especially challenging because that component is typically
a small fraction of the total intensity and because accurate

calibration of instrumental polarization is difficult. Table 1

(Poln. Driver) shows the KSPs that require highly accurate

polarization measurements.

A related specification concerns spectral imaging

dynamic range in which the spectral-lines of atoms or

molecules are observed across the FoV. In this case, strong

Fig. 1. A schematic representation of an SKA array configuration.

Each dot represents a cluster of antennas, shown clustered for

local access to communications infrastructure, which will run along

the lines shown. The full array configuration will continue a quasi

self-similar pattern out to�1000 km. Beyond that scale the number of

antennas will be very small. The dense group of antennas (the core)

at the upper left provides for a very dense pattern of baselines

between pairs of antennas, an important aspect of the configuration

needed obtain sensitivity to extended radio emission. Although not

shown, a similar array of low and high frequency Aperture Arrays

(Section III) would be placed next to the dish core. At large distances

from the centers the placement of both dishes and AAs would overlap

to facilitate data transport.
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sources in the sidelobes of the antennas, which change
shape slightly with wavelength, can contaminate the

image. However, this effect will be much smaller than

those described above.

High dynamic range is also needed in the frequency

domain (spectral dynamic range) in order to detect weak

emission in the presence of a strong but narrow-bandwidth

signal, often RFI, elsewhere in the processed band. The

achievable spectroscopic dynamic range is usually limited
by nonlinearities in the signal processing.

7) Pulsar Capabilities: The SKA science case also has a

high priority on using radio pulsars to probe fundamental

physics, such as theories of gravity. For these observations,

the spatial frequency coverage of the array is unimportant

because pulsars are small enough and remote enough that

they appear as point sources. However, what is required
is to collect the voltages from the individual antennas, put

in the appropriate delays, and add them to produce an

effective aperture equivalent to their total collecting area.

Time-gated averaging and removal of dispersion can be

provided by postprocessing the array data.

8) Time Resolution: Until recently, it has been thought

that the Universe is fairly static or at least predictable on
human time-scales. But in the last few years, various ir-

regular radio transients have been observed. These include
stellar flares, giant pulses from the Crab Nebula, variations

in flux density due to Bmultipath interference[ as radio

emission from unresolved objects transits the magnetoio-

nic medium between the stars, and pulses of unknown

origin [7]. With its high instantaneous sensitivity, the SKA

is uniquely placed to investigate the radio transient pa-

rameter space. There is no numerical specification for this,

since the parameter space is mostly open for exploration
over many orders of magnitude.

III . DESIGN SOLUTIONS

The technical performance described above requires not

only a telescope with a far larger number of antennas than

today’s most powerful radio telescopes but also solutions

that were not available to the designers of these telescopes.
The improvement derives largely from advances in the

computing industry, the availability of advanced semicon-

ductor processes for analog circuits, and the transportation

of large volumes of data over optical fibers. These advances

may enable the use of known but previously impractical

designs for antennas, such as arrays of huge numbers of

small antennas.

Fig. 2 shows the design solutions being considered for
each wavelength range from 3 m to 3 cm. Fig. 3 is a system

Fig. 2. Design solutions being considered for the SKA in wavelength ranges from 3 m to 3 cm. The bars under the wavelength axis denote ranges

over which four sensor technologies will be used. In order of decreasing wavelength, the design solutions are: sparse Aperture Arrays (AAs),

dense AAs, parabolic reflectors with Phased Array Feeds (PAFs), and reflectors with Single Pixel Feeds (SPFs). The dotted lines indicate

where technology choices may have to be made, or could co-exist. The graphic at the lower left shows the capability of AAs to form multiple

simultaneous beams; above this graphic, sparse AAs are depicted on the left and dense AAs on the right, composed in this case of Vivaldi antennas.

The middle diagram shows a parabolic reflector with a PAF at its focus. The right diagram shows an array of parabolic reflectors with SPFs at

their foci. The reflectors could have both SPFs and PAFs, each covering a different frequency range.
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block diagram showing the interconnections and major

components of the SKA. The base design solution includes

large parabolic reflectors many wavelengths across (elec-

trically large), with a dual polarization feed at the prime or

secondary focus of each reflector. In SKA parlance, these
are called Bsingle-pixel feeds[ (SPFs) because the field of

view is determined by the (3 dB) primary power pattern set

by the antenna diameter. Such antenna systems are very

well developed for radio astronomy and industry [6]. In the

SKA, they will be used at wavelengths shorter than 20 cm,

where a high survey speed has not been shown to be

scientifically compelling.

At wavelengths longer than �20 cm, a key specifica-
tion is the survey speed and favors antenna designs with

large instantaneous FoVs. Most radio telescopes for

decimeter wavelengths have used parabolic reflectors

with SPFs and thus have small fields-of-view, in proportion

to ð�=dÞ2, where d is the diameter of the antenna and � is

the wavelength. Electrically small antennas (a fractional

wavelength in size) have small collecting area but very

large fields-of-view (i.e., their antenna patterns are very
broad). These can be used as elements of phased arrays [8],

known as aperture arrays (AAs). In AAs, electronic

beamformers perform the function of compensating for

the geometrical delays of the signals from the array of

elements and summing the signals to form a single output.

The geometrical delay compensates for the delay between

when the wave front strikes the first element of the array

and when it strikes a given element. It also determines the

direction of maximum sensitivity (beam direction). Beam

sizes formed by AAs and dishes of the same diameters are

approximately the same. However, multiple beams can be

formed simultaneously from all or a subset of elements in
an aperture array using a beamformer for each beam. In

this way aggregate fields-of-view of hundreds of degrees

squared are potentially accessible [5]. In SKA design par-

lance, the phased arrays are known as dense aperture arrays

(dense AAs) if the spacing of the elements within the AA is

no more than one-half a wavelength at the shortest wave-

length of operation; the area of dense AA used to form a

single beam is known as an AA-patch. Dense AAs fully
sample the spatial structure of the incoming wave front.

However, to achieve a useful sensitivity with subwavelength-

size elements, a large number may be needed. For example,

at 30 cm wavelength and with a system noise temperature of

50 K, more than 22 � 106 elements are needed for each

polarization to reach 10 000 m2=K (Table 1).

Another means of expanding the FoV with multiple

beams is to use phased arrays at the foci of parabolic re-
flectors to expand the single-pixel FoV. This FoV will be

smaller than can be produced by an AA. In this concept,

the weighted sums of electrically small antennas within a

dense phased array at the focus forms a cluster of over-

lapping, off-axis beams to feed the reflector. With cur-

rently practical hardware, a 10 � 10 array of overlapping

beams can be formed, increasing the field-of-view by a

Fig. 3. A conceptual block diagram for the SKA, showing the interconnection of major components, the location of major parts and the

flow of data from the antennas (top and left) to the signal processing facility, and off-site to a computer facility. Control interconnections

between the Operations and Maintenance Center and the on-site components are not shown.

Dewdney et al. : The Square Kilometre Array

1488 Proceedings of the IEEE | Vol. 97, No. 8, August 2009

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on August 14, 2009 at 00:26 from IEEE Xplore.  Restrictions apply. 



factor of about 30 relative to an SPF. In SKA design par-
lance, this type of focal plane array is known as a phased-

array feed (PAF) [9]. A second technique for expanding the

FoV is also availableVa cluster of standard feeds at the

focus instead of a PAF. The disadvantages of this method

for the SKA are discussed in [9]. It can be shown that

within limits the total FoV can be set by the size of the PAF

independently from the antenna diameter. The radius of

the PAF from the axis of symmetry of the paraboloid de-
termines the radius of the FoV. This is entirely geometric

and independent of wavelength, in contrast to dishes with

SPFs and AAs, where the radius of the FoV increases with

� for a given dish or AA diameter. Thus the total FoV and

the number of dishes, which would otherwise be linked to

dish diameter, can be chosen separately in the design of a

synthesis telescope of given collecting area. One attraction

of this approach is that a wide FoV, and high survey speed,
may be obtainable with relatively few dishes, simplifying

cross-correlation and postprocessing. With correlation

load scaling as the square of the number of antennas, the

PAF approach in which the correlator complexity scales

only linearly with total FoV is conceptually attractive

(Section IV-D). This is an example of the need to consider

carefully the way receiver chainsVthe total number of

which define the telescope FoV almost independently of
SKA receptor conceptVare interconnected and processed;

see, for example, [10] and [30].

At wavelengths longer than �1 m, it becomes possible

to utilize sparse aperture arraysVelectrically small anten-

nas spaced much more widely than a half-wavelength.

Again, the outputs of individual antennas are summed after

correction for geometrical delay. At these wavelengths,

even electrically small antennas have significant collecting
area ðAe � 0:12�2Þ, which is important because Tsys is

dominated by irreducible noise emanating from the sky

itself at long wavelengths; thus the principal route to im-

proving Ae=Tsys is through larger Ae. In contrast to the

shorter wavelengths at which dense AAs are proposed, a

much smaller array of such antennas can provide sufficient

sensitivity. This concept is being implemented in the Low-

Frequency Array (LOFAR) being constructed in Europe;
the Murchison Wide-Field Array (MWA), which is being

constructed in Australia; and the Long Wavelength Array

(LWA), which is in the prototype phase in New Mexico.

Sparse aperture arrays made from elemental antennas fun-

damentally undersample the spatial structure of the incom-

ing radiation field, resulting in a complex but predictable

pattern of sidelobes at significant distances from the main

beam. Knowledge of the positions and intensities of bright
sources over the whole sky can be used to mitigate the

effects of undersampling at the cost of additional data

processing.

As noted above, a characteristic of AAs is that the ele-

ments have very broad antenna beams (i.e., sensitive to

signals from most directions). Very strong signals, such as

RFI, must be propagated through the amplifiers and the

beamformer without significant distortion before finally
being summed where these signals will be suppressed by

destructive interference. This is a substantial challenge for

very low-cost low-power receiver chains.

In summary, Fig. 2 shows the suite of design solutions

available to the SKA as a function of frequency. At the

lowest frequencies, sparse AAs are the most practical so-

lution. It is likely that two different arrays of antennas will

be needed to cover the frequency range up to �500 MHz.
From �500 to �1000 MHz, there are three possibilities:

dense AAs, parabolic antennas with PAFs, and parabolic

antennas with SPFs. From �1000 MHz to 10 GHz, para-

bolic antennas with SPFs are chosen. The range of wave-

lengths shown for each potential design solution is unclear

because at the time of writing, sufficient evidence for

making a final technology selection has still to emerge

from SKA development work. For example, SPFs could
even be used as low as �300 MHz. Thus a set of possible

design solutions is suggested that will be increasingly

powerful but take on successively increased allocation of

technical risk. These risks and other design challenges will

be elucidated in the next section and will lead to the

outline of a plan on how the SKA design will proceed.

IV. TECHNICAL CHALLENGES

A. System Noise
As noted above, both the staring sensitivity and the

survey speed are proportional to ðAe=TsysÞ and ðAe=TsysÞ2,

respectively. Since the birth of radio astronomy, the

capabilities of radio telescopes have increased dramatical-

ly, with a factor of ten improvement every ten years [11].
This is almost entirely due to improvements in system

noise made in existing telescopes, particularly the noise

component generated in the first amplifier connected to

each antenna in the telescope, the low-noise amplifier

(LNA). To achieve this performance, LNAs are cryogen-

ically cooled to 10–20 K. Because receiver systems using

this technology are large, complex, and expensive, it makes

sense to use as few as possible per unit collecting area,
consistent with other constraints in the design of a

telescope. At wavelengths around 30 cm, LNAs operating

at 300K (room temperature) are showing sufficient pro-

mise that they might in future tip the balance in favor of

uncooled amplifiers at the longer wavelength end of the

SKA frequency range.

The successful utilization of the AA design solutions

instead of SPFs clearly implies that the increased � factor
in the SSFoM ðAe=TsysÞ2� is sufficient to compensate for

the potentially higher Tsys that will result because AAs

cannot use cryogenically cooled receivers at frequencies

where the LNA noise dominates system noise. This assumes

similar costs of aperture in both cases. A similar argument

applies to PAFs. Thus a threshold of performance/cost ratio

(SSFoM/unit cost) must be crossed before it makes sense to
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use either FoV expansion technology. Because the actual
cost per unit area of AAs and PAFs is potentially higher than

for SPFs, improving Tsys for room-temperature receivers

appears to be the most likely means of successfully utilizing

AAs and PAFs.

Because in AA designs the LNAs are evenly distributed

over the entire aperture, there is only one LNA design

option available: the development of room-temperature

LNAs with sufficiently low noise. At room temperatures in
a band from 700–1400 MHz, it is now possible to reach

noise temperatures G 20 K at the input connector of LNAs

Bon the bench[ [12]. There is more design flexibility for

PAF designsVthe more limited number of spatially con-

centrated LNAs (i.e., in the focal region of reflectors) opens

the possibility of practical cryocooling. Thus there are two

LNA design options available: a) room-temperature LNAs

and b) LNAs that are sufficiently cooled to cross the noise
threshold noted above. For option b), note also that LNA

noise improves monotonically with decreasing ambient

physical temperatureVsignificant improvement can be

obtained at physical temperatures of �102 K [13].

A limiting factor in the current best LNA-feed combi-

nations is their wavelength coverageVthe best receivers

cover a ratio of �2 : 1 between the shortest and longest

wavelengths. For the SKA, this implies a need for about
five LNA/feed combinations on each reflector. Very wide-

band feeds are being adapted for the SKA, and a feed for

Allen Telescope Array antennas has been developed that

covers a wavelength ratio of 15 : 1 [14]. If the wide-band

designs are able to maintain very low noise over similar

bandwidth ratios, it will represent a major improvement in

the cost of reflector-based solutions for the SKA.

A common design theme for achieving low noise and
high bandwidth ratio is the need to design the LNA and the

antenna as an optimized integrated unit. This applies to

SPFs for reflectors as well as to AAs and PAFs. This is a

practical design and measurement challenge. Typically,

LNAs are designed for standardized input impedances by

people with different skills from those who design

antennas and feeds. For AAs and PAFs, another design

parameter is the noise coupled between adjacent antenna
elements. Also, special measurement techniques, such as

that depicted in Fig. 4, must be adopted to measure and

compare the noise performance of integrated units that are

difficult to measure separately [15].

At wavelengths longer than�1 m, noise from the Bsky[
begins to dominate system noise increasingly with

wavelength. At these wavelengths, LNAs operating at

room temperature (�300 K) are suitable for the SKA.
Although they may be needed in large numbers, they are

very inexpensive to fabricate.

B. Antennas and Collecting Area
The design of the SKA will be strongly influenced by

the reduction of LNA noise in radio telescopes, to the point

where further (dramatic) reduction seems unlikely. The

SKA science goals require orders of magnitude more sen-
sitivity than existing telescopes will be able to deliver.

Thus the only way to increase the sensitivity is to increase

the total Ae ð�AÞ, where � is the aperture efficiency. Since

efficiencies of existing telescopes are typically greater than

0.5, there is little scope for large efficiency improvements,

but efficiency must be maintained in new designs. In the

case of AAs, the efficiency subsumes a factor for average

Bforeshortening loss,[ a cosðZÞ factor, where Z is the
zenith angle of the pointing direction. Greater AA col-

lecting area must be built to compensate for this factor.

Electrically large parabolic reflectors are the only

design solutions available for wavelengths shorter than

�20 cm, although they also work at much longer wave-

lengths. Prime-focus versions of these antennas can

maintain high efficiency at diameters greater than �10�.

The FoV of a reflector antenna is proportional to ð�=dÞ2
steradians (increasing with wavelength).

The design of the appropriate SKA reflector antennas is

a complex, constrained cost balance. The constraints are as

follows.

a) The total collecting area must be sufficient to

meet the sensitivity specification of 104 m2=K

(using the lower end of the sensitivities listed

in Table 1). Using an estimate for Tsys of 40 K and
an aperture efficiency of 0.7 yields a total

collecting area of �5.7 � 105 m2.

b) The diameter cannot be smaller than �10�max,

where �max is the maximum wavelength at which

we think reflector technology will be useful. This

wavelength will be determined by the relative

success of AA technology but is unlikely to be

larger than 1 m.
c) The shortest wavelength of operation is G 3 cm

(> 10 GHz).

With cost pressures extreme, and much of the SKA key

science achievable below 10 GHz, this judgment has been

made after several years of engineering and astronomy

Fig. 4. A device constructed by ASTRON [15] for measuring noise from

an antenna/LNA combination, which is placed at the bottom of the

inverted pyramid (right). The metallic sides reflect all radiation

towards the "cold" sky, which is used as a low-temperature reference.

The cover (left) can be slid over the top of the device. It contains

absorber at ambient temperature to act as a high temperature

reference. Using these known reference radiation temperatures,

noise properties of the antenna/LNA combination can be derived.
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interchange. A contributing factor in the judgment is that,
although the overall goals of the SKA are to reach wave-

lengths of less than 1 cm, it is not clear that telescope sites

chosen to emphasize minimum RFI for long wavelengths

have sufficiently benign tropospheres, especially in terms

of system noise loading, to use at shorter wavelengths [16].

Taking all constraints into account, a preliminary inves-

tigation of this optimization problem has led to an estimate

of 2000–3000 15-m-diameter antennas [5].
One of the largest challenges for the SKA will be to

build these antennas at an affordable cost. The current

small market for large reflector antennas provides little

incentive to emphasize production techniques for thou-

sands of antennas. The traditional design of large radio

reflectors utilizes a steel or aluminum space-frame struc-

ture that supports numerous adjustable reflector panels.

While this can deliver the required SKA performance, the
production, installation, and maintenance costs are a high

barrier. Developments exploiting new materials and mold-

based production technologies offer substantial cost reduc-

tions for volume fabrication of reflectors. The mold-based

methods permit the repeatable fabrication of reflectors.

The cost of a large accurate mold is amortized over many

pieces. In addition, a reflector can consist of one or a few

large pieces that can be field-installed with no adjust-
ments. Mold-based reflectors can be made of metal or

composite materials. Some composite materials offer

weight and stiffness advantages as well as near-zero coeffi-

cient of thermal expansion. There is almost no dependence

on the desired shapeVoffset or shaped reflectors are

similar to symmetrical shapes [17]. Molded metal antennas

offer the advantage that little care is needed to protect

them from sunlight, whereas composite materials must be
protected by a ultraviolet resistant layer. Although the

comparative costs of these two new technologies have not

yet been fully assessed, it is clear that either fabrication

method offers an almost flat cost-wavelength curve for

the reflector to 3-cm wavelength. It must be noted that

reflectors are only one part of reflector antenna design.

Volume production techniques will have to be adopted for

mounts, towers, and foundations as well.
A similar challenge applies to the production of AAs,

where there is also great scope for volume production

techniques of the millions of elemental antennas and

receiver chains. For example, techniques for Bprinting[
rows of antennas are being developed [18], and presum-

ably robotic assembly techniques will be used for the

distributed active components in the AAs.

Because there are many exposed active components in
AAs, a unique challenge is protection against destructive

electromagnetic pulses induced by nearby lightning. This

will require designing and testing a lightning protection

system for the entire array area.

As noted in the previous section, a particular challenge

for AAs and PAFs is to actually realize an improvement in

survey speed at a competitive cost.

C. Data Transmission
The design of the SKA as envisaged in any of its forms

would be impossible without the advances in data

transmission brought about by optical fiber transmission

technology. Nevertheless, data transmission will limit SKA

performance, in particular the usable FoV of antennas at

long distances from the array center (long baselines).

Fortunately, it is not a high scientific priority to image a

large instantaneous FoV (e.g., tens of degrees squared)
with high resolution (e.g., G 1 arcsec). The data rate R
entering the central correlator and the distances of trans-

mission are the driving cost factors. In the simplest case

where identical antennas are correlated throughout the

SKA, R / BNnbeam, where B is the total instantaneous

bandwidth from each correlated antenna in the same units

as R, N is the number of antennas and nbeam is the number

of beams within the FoV. Noting that the solid angle of the
beam of an individual antenna or dense phased array col-

lecting area is proportional to �2=Ae and nbeam / ðAtot=
N�2Þ�, then R / BAtot�=�

2, where Ae is the effective

collecting area of an antenna, Atot is the total effective

collecting area of the telescope, and � is the instantaneous

FoV. This proportionality does not depend on the aperture

technology (i.e., SPFs, AAs, or PAFs). For AAs and PAFs,

� is an independent design parameter and can be limited
to less than the available FoV defined by the antenna

design, should that be necessary to reduce cost. For SPFs,

� / ð�=dÞ2 and R is invariant with �.

The distances of transmission depend on the config-

uration of antennas on the ground. From a practical per-

spective, different distance regimes will require different

data transmission technology and have different associat-

ed costs. The range of distances will be from �30 to at
least 3� 106 m. For distances up to a few kilometers,

analog optical transmission will be less expensive than

digital, but the performance of analog systems remains to

be fully established. The data transmitted over distances

longer than a few kilometers will be in digital form.

Clearly, the cost will also depend directly on the number

of bits used to encode each sample. In the complete

absence of interfering signals, radio astronomy can be
done with 2 bits per sample with only a small impact on

performance. However, even in the radio-quiet sites

selected for the SKA, at least 4 bits per sample will likely

be needed because of RFI from air and space-borne

sources.

Data rates for maximum bandwidth, FoV, and collect-

ing area are: SPFs with 8 GHz of bandwidth in each of two

polarizations will produce 160 Gbits/s from each dish
(assuming 25% encoding overhead) or, for an array of

3000 dishes [5], a total of 480 Tbits/s entering the cor-

relator. PAFs with 700 MHz bandwidth per polarization in

each of 30 beams will produce a total of 840 Tbits/s for an

array 2000 dishes [5]. An array of 250 AA-patches covering

an FoV of 250 deg2 with 700 MHz bandwidth will produce

a total of �4.1 Pbits/s of data. The cost of these very high
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data rates is likely to limit bandwidth, FoV, or collecting
area in practice.

D. Digital Signal Processing
Digital signal processing traditionally encompasses op-

erations on the data from digitization to the point where

correlated results (or in the case of pulsar observations,

summed data; see Section II-A7) are written on general-

purpose computer storage devices. For an SKA design
consisting of SPFs, the correlator is the main data pro-

cessing unit. Although this will be a very large data pro-

cessor, it may not cost more than a small fraction of the

total cost of the SKA [19].

AAs and PAFs require a beamforming operation, a

weighted sum of the signals from individual or small

groups of elemental antennas, resulting in a single data

stream. AAs also require the insertion of delays in the
signal path from each input to compensate for geometrical

delay. In the case of AAs, the weights are used to form and

steer the telescope beam, whereas for PAFs, the weights

are used to form beams that are displaced from the optical

axis of the dish. For PAFs, the weights will be a function of

frequency within the observing band [20]. Thus it will be

necessary to use digital filtering techniques to split these

signals into a number of frequency channels before sum-
ming them. The filtering is efficiently done using a fast

Fourier transform like operation called polyphase filtering

[21]. Because the presummed data rate is very large, it is

important to minimize the number of channels needed at

this stage.

An aperture synthesis correlator cross-correlates the

streams of data from pairs of antennas in the array. Each

correlation consists of a multiply–accumulate (MAC) op-
eration in which the accumulation component averages

the product for a predetermined time. Before correlation,

the data streams must also be corrected for geometrical

delay and are digitally filtered into frequency channels. As

explained in Section II-A5, the width of the channels is

determined by the science program.

The size of a large correlator is approximately

proportional to the rate of MAC operations Nop. Nop /
N2

aptNbeamNchanBchan, where Napt is the number of aper-

tures (dishes or AA patches) in the array, Nbeam is the

number of beams required for each aperture to cover the

required total FoV, Nchan is the number of frequency

channels required, and Bchan is the bandwidth of each

channel in samples per second.

It is useful to understand how the size of the correlator

depends on the total collecting area Atot and the total FoV
�, which are factors appearing in the basic SKA param-

eters required by the science. For SPFs, Nbeam ¼ 1 because

each dish can have only one beam. Napt / Atot=d2 and

� / ð�=dÞ2, where d is the diameter of the dish. Combin-

ing these two proportionalities yields Napt / �ðAtot=�
2Þ,

where � is the FoV of a dish, the total possible FoV using

dishes with SPFs. The only way of increasing � for a fixed

Atot is to decrease the dish size, which increases number of
dishes and the size of the correlator. Note that the

apparent �2 dependence disappears in the expression for

Nop since � / �2.

For AAs and PAFs, the total FoV � can be made up of a

number of beams. Nbeam / �=�beam, where �beam is the

size of each beam. �beam / ð�=dÞ2 / �2Napt=Atot. For

AAs, d is the diameter of an AA-patch and Napt the number

of patches. For PAFs, d is the diameter of the dish and Napt

is the number of dishes. Combining the two proportion-

alities, Nbeam / �ðAtot=Napt�
2Þ. Thus Nop / Napt�ðAtot=

�2ÞNchanBchan. The number of AA-patches or PAF-

equipped dishes can be chosen independently from the

size of the specified total FoV. For example, by choosing

large apertures, the size of the correlator can be reduced at

the expense of requiring more beamforming equipment to

supply data streams to the correlator. It is not yet apparent
whether this trade is a good one. It depends on the relative

cost of antennas, beamformers, and correlators.

The very high correlator-input data rates, arising from

thousands of antennas potentially with enhanced fields-of-

view and several gigahertz of input bandwidth, will require

a large operations rate. Thus all of the digital signal

processing described above will likely be carried out using

special-purpose hardware. This will be needed to minimize
power consumption, which could become a cost driver for

the design or even a limiting factor in the size of the digital

signal-processing systems.

E. Calibration, Image Formation, and
Nonimaging Processing

Image formation and calibration operations are carried

out using software running on general-purpose computers
or supercomputers on data emanating from the correlator,

from which the output data rate is significantly reduced

compared with the input.

1) Image Formation and Calibration: The algorithms for

image formation are a combination of 2-D gridding of

data, Fourier transformation, deconvolution, and self-

calibration. Wide-field imaging may require more steps or
that these steps be carried out on subfields. These oper-

ations are carried out in a large iterative loop to reach an

acceptable image, where the sidelobes of the synthesized

beam and artifacts from inaccurate calibration are lower

than the thermal noise level [22].

Self-calibration operates under the assumption that all

system errors can be represented as complex gain changes

in the signal path from the outer atmosphere to the corre-
lator. This includes net amplifier gains, phases, polariza-

tion responses, and antenna response patterns, all of which

will be functions of frequency and time, and some of which

may be functions of direction on the sky. The radio tele-

scope measurement equation parameterizes the perturba-

tions of the signal as it traverses the path through the

system [23]. The correlation measurements typically

Dewdney et al. : The Square Kilometre Array

1492 Proceedings of the IEEE | Vol. 97, No. 8, August 2009

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on August 14, 2009 at 00:26 from IEEE Xplore.  Restrictions apply. 



contain enough information to solve for both the image
and the parameters of the measurement equation simul-

taneously, assisted because the parameters change slowly.

However, if the numbers of unknowns becomes too large,

if variations in the unknowns are too rapid, or if the ca-

libration measurements are too noisy, there will not be

enough information in the measurements to yield robust

estimates of the images. The SKA with very wide-field

images will be more susceptible to these problems than
present-day telescopes. Careful design will be required to

ensure that as few system-wide parameters need be cali-

brated as possible.

The imaging task becomes enormous if the FoV to be

processed is very large. Imaging a field much larger than

the science FoV may be necessary if the antenna or beam-

forming system cannot filter out signals, either from radio

sources or radio interference, at large angular distances
from the field center. Moreover, the interferometer data

from sources that are outside this field may be under-

sampled. These problems can be solved if the system is

linear and sufficiently stable, and the number of such

signals is not large. A particular issue arises when the beam

pattern rotates on the sky, as happens with AAs and with

most designs of dishes. This imposes a quasi-predicable but

rapid variation in the signals presented to the correlator
from each antenna. Even if this effect is removed by post-

processing, there will be residual errors that cannot be

corrected. The SKA will have to cope with sources within

the FoV that are �106 times stronger than the thermal

noise in images. This dynamic range specification will re-

quire care in specifying the accuracy of beamforming and

control of antenna sidelobes. In fact this requirement will

affect the specification of many of the subsystems directly
in the signal path. The calibration techniques noted above

will also have to recover direction-dependent gains due to

uncalibrated changes in antenna beam patterns.

2) Nonimaging Processing: Searching for pulsars, espe-

cially millisecond pulsars, and carrying out sensitive timing

analysis of pulsar signals is a key nonimaging SKA science

requirement. Since neutron stars, the sources of pulsar
signals, are point-like, making images is not the main

scientific requirement. Currently, most pulsar observations

are made with very large single reflectors rather than arrays

of antennas. The SKA is attractive for pulsar observations

because of its very large total collecting area, all of which

can be pointed over most of the sky. The SKA will use

beamforming techniques to form a number of dual polar-

ized data-streams from weighted sums of the signals from
antennas in the core of the array, after compensating for

geometrical delays of the signals. These beams can be di-

rected anywhere within the primary patterns of the antennas

or just clustered together. Each beam is similar to what would

be obtained with a single reflector of the same area as the

antennas, except that the beam area is smaller in proportion

to FF, where FF is the areal filling factor or the ratio of the

total collecting area to the area occupied by the array. A small
beam area is a disadvantage when searching the sky; thus it is

advantageous to form a number of beams to increase the total

area of sky being observed at one time. This is a relatively

small cost compared to the total system cost. For pulsar

timing observations, it may be possible to Btime[ more than

one pulsar simultaneously using the electronically formed

beams if the pulsars being timed are close enough to each

other, as they might be in a globular cluster. Otherwise the
array must be split into subarrays, each with its own beam.

The data-streams formed in the way described above are

recorded on disks in most present-day pulsar observations

and analyzed later using software running on super-

computers, arrays of computers, or special-purpose hard-

ware. Because of the very large data volumes attainable with

the SKA, it will probably be necessary to build hardware

that can do the computation in real time [24].

F. Scalability of Solutions
The SKA will be considerably larger than the largest radio

astronomy project to date. Although such scaling is often

proposed, many of the technologies and designs used in

smaller radio telescope projects cannot be scaled to the SKA.

Non-optimum use of resources is of little consequence in

such projects, but they become major obstacles when scaled
up. The most obvious examples are power, space, intercon-

nection in signal-processing equipment and long-distance

data transmission; the required computational performance,

and the development and maintenance of software. The final

SKA design will have to attain very high utilization of

resources to reach fruition. This will require efficient

architectures supported by the very latest electronics

packaging, cooling, and interconnection technology.

G. Cost
The target budget for the SKA project, based on pre-

liminary cost estimates, is 1500 million euros (2007). Of

this, 1000 million euros are set aside for system, or

hardware, costs. Software costs are estimated at a further

200 million, infrastructure at 200 million, and project

delivery costs at 100 million euros. The latter includes
larger scale nonrecoverable engineering costs (e.g., an-

tenna manufacturing plant) and cost-loading for remote-

area construction. The costing process is being refined

continuously, with verifiable cost estimates being an aim of

the PrepSKA program (Section V). Other radio telescopes

have been designed with yet-to-mature technology and risk

mitigation in the form of fallback options. However, the

SKA is probably unique in scientific instrumentation in
managing substantial risk across nearly all functional

blocks. To derive cost estimates in such an environment

requires both bottom-up estimates from better defined

areas and top-down (parameterized) estimates, where the

best information comes from initial demonstrators or in-

dustry trends. To distinguish as early as possible between

competing technology implementations, a top-down
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estimation tool (SKAcost) has been developed to investi-
gate tradeoffs and design boundaries [25]. As detailed

designs of subsystems emerge, bottom-up cost estimates

will also be carried out, in parallel with improved system

and infrastructure costs.

Over even a fraction of the lifetime of the SKA,

operations cost as much as capital cost could limit its

scope. Power costs are the most prominent example

(Section IV-I), but there are too many other operational
costs to list here. In general, careful planning will be re-

quired to maintain a system that is geographically distri-

buted and is composed of a variety of new technologies.

H. Site and Infrastructure
The search for an SKA site began in 2003 with initial

proposals from a number of countries to host the instru-

ment. Following a detailed request for proposals in 2004,
and consideration of comprehensive submissions from

Argentina and Brazil, Australia, China, and South Africa,

two candidate central sites were short-listed in 2006. One is

in the Murchison area of Western Australia; the other in the

Karoo region of South Africa. Representative SKA config-

urations are shown in [18] and [26]. Radio quietness was a

prime selection criterion for site short-listing, and a one-year

RFI monitoring program by site proponents was augmented
by independent measurements by the ASTRON institute,

acting under contract to, and in collaboration with, the SKA

Program Development Office (SPDO, formerly the IPSO).

Both wide-band (80 MHz–25 GHz) and sensitive (noise

floor around �200 dBW m�2 Hz�1) measurements were

made, with broadcast signal peak levels being below about

�150 dBW m�2 Hz�1, and frequently much lower, in

both short-listed locations. Both candidate central sites
are very remote Southern Hemisphere places with low

population densities, now and for the foreseeable future.

Both are situated in areas of high ionospheric stability

and have climatic water vapor characteristics supporting

radio interferometer operation to at least 10 GHz [16]. Over

the next two years more detailed site characterizations will

be carried out, with a final site recommendation likely in

2011 and a decision in 2012.
Initial studies of SKA infrastructure requirements sug-

gest that, while the isolation of the candidate sites poses

major challenges, considerable experience exists in devel-

opment of such locations, often in the context of natural

resource exploitation. Challenges for the SKA include the

provision of affordable power (Section IV-I), installation of

a massive telescope optical fiber data network, access to

national and international fiber backbones, and location of
technical and staff facilities in remote areas. It is likely that

the SKA will own all optical fibers within a few hundred

kilometers of the central site, with more distant circuits

being leased from telecommunications companies. Dedi-

cated access to a number of telco fibers will be needed, but

it is expected that the longest transnational and interna-

tional links will be via commercial switched circuits. Both

candidate sites support major SKA precursor telescopes
and exemplar infrastructure development models, ac-

counting for the growth in site needs [27]. It is expected

that SKA infrastructure investment, including power

provision and optical fiber trenching (but excluding

terminal equipment), will be around 200 million euros

in present-day currency. Studies by specialist engineering

consultants over the next two years will look in more detail

at costs, with more emphasis being placed on differenti-
ating the two sites.

I. Power
Present estimates place the SKA power demand at

30–50 MW for the array proper, with a further 20–30 MW

for supercomputing and associated facilities. While still

quite uncertain, numbers such as these make it clear that

power provision is a major challenge for the project. First,
the isolated nature of the candidate sites means that over

100 million euros of capital expenditure will be needed to

feed power to the central and remote parts of the array.

Secondly, consumptions of this order mean that power will

be a large factor in the total cost of ownership, with

charges of tens of millions of euros per year being un-

avoidable. In capital terms, it is likely that the optimal

infrastructure differs between South Africa and Australia,
with grid-connection and self-generation options, respec-

tively, being favored at this point. Part of the project

investigation over the next few years will be to examine the

suitability and possible use of renewable energy solutions

in an effort to reduce supply costs and, perhaps, to break

the nexus between SKA power costs and rising world-

parity prices. Regardless of the solutions chosen for the

central site, it is certain that renewable power will be
required for remote, isolated array stations; a present esti-

mate puts individual station requirements at > 100 kW.

While normally prosaic considerations, available and

affordable energy solutions will define, in large measure,

the capability of the SKA.

On the demand side, the SKA system design will

emphasize the use of low-power technology, passive envi-

ronmental conditioning, and other energy reduction ini-
tiatives. Nevertheless, large digital systems consume a

great amount of power. AAs and PAFs require power for

the extensive digital processing in the beamformers to be

delivered to antennas across the site. This is more ex-

pensive than a system that dissipates power centrally.

V. PROCEEDING WITH THE DESIGN
OF THE SKA

The global network of institutions supporting the SKA,

represented by the SKA Science and Engineering Com-

mittee, put together a plan in 2007 to, among other things,

refine the technical design and carry out the work needed

to obtain a cost for the SKA design. This new engineering

phase, a four-year Preparatory Phase of the Square
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Kilometre Array (PrepSKA) [28], began in April 2008 with
funding by the European Community’s Seventh Frame-

work Program. The work is being carried out by the SPDO,

with substantial in-kind contributions from the network of

supporting institutions. This effort will lead at the end of

the preparatory phase to a funding application to enable

detailed design and construction of the SKA to proceed.

Part of the work will be to decide which technologies

will be adopted and what modifications to the science plan
must be made. This process began in 2006, when the SKA

program adopted a reference design, consisting of a large

number of small dishes at high and midfrequencies plus

AAs at lower frequencies as the basis for continued tech-

nical developmentVseveral earlier options were set aside,

although many goals and features outlined in preliminary

concepts figure prominently in current SKA thinking [29],

[31]. In 2007, preliminary specifications, derived from a
balance of scientific requirements and technical capability,

have been provided for the small number of implemen-

tation options described herein and depicted in Fig. 2 [5].

A baseline system design was defined, consisting of sparse

AAs for frequencies from 70 to 500 MHz in two separate

arrays for different frequency ranges and 15-m parabolic

reflectors (dishes) equipped with SPFs for frequencies

from G 500 MHz to 10 GHz. Two other possible de-
signs contain alternatives for the 500–1500 MHz range:

1) parabolic reflectors equipped with PAFs for frequencies

from 500 to 1500 MHz and SPFs for 1.5–10 GHz; or

2) dense AAs for 500–800 MHz and SPFs for 800 MHz–

10 GHz. In both of these options, fewer dishes would be

constructed, so as to keep the total cost fixed.

Cost will play a major role in the adoption of options 1

or 2 above. Dishes are a component of all options, as are
sparse AAs at frequencies G 500 MHz: the design and

factory setup overheads will be fully absorbed for these

technologies. Moreover, the additional cost of equipping

dishes with feeds for frequencies down to 300 MHz to

implement the base design is likely to be incremental.

However, if some key challenges to PAF and AA tech-

nology (Section IV-A and B) can be met, the PAFs or dense

AAs could provide a sufficient improvement in survey
speed that adopting them will be justified. The basis of this

justification would be additional unique science capability

from AAs or PAFs, i.e., capability that could not be

obtained by using the same funds to expand the size and

frequency range of the baseline design. In this case, the

additional science capability will have to be sufficiently

compelling to warrant fewer dishes in the array, given that

this also leads to lower sensitivity at frequencies higher

than �1.5 GHz. Alternatively, one of these technologies
could be sufficiently promising (i.e., successfully demon-

strated but not yet mature) that an upgrade path can be

incorporated into the original design, the cost of which

would be judged in a similar way.

The following are examples of challenges that will

probably have to be met to reach this threshold. (At this

stage of development, only rough comparisons or numer-

ical estimates can be provided).
• Integrated LNA/antenna element designs with

room temperature LNAs with TelementG 25 K at

frequencies from 300 to 1500 MHz, where Telement

is the noise contributed to the system noise from

the integrated LNA/element. This development

would enable both AAs and PAFs to operate in a

similar noise regime to SPFs at these frequencies.

An alternative for PAFs is to develop an inexpen-
sive cryocooling system.

• The annual power consumption of large AAs is

kept sufficiently low that the operating cost will

not be a significant fraction of capital cost.

• The cost of AAs and associated beamformer

electronics per unit area is not much more than

the cost of dishes in unit area terms.

• The cost of a PAF is not much more than the cost
of the associated reflector antenna equipped with

a SPF. Otherwise, it may make sense to use the

funds to construct more reflector antennas. Of

course this is not the whole picture; the relative

performance of the two systems for doing the

science must also be a factor.

• AAs, both dense and sparse, can be sufficiently well

calibrated to meet the spectral and imaging
dynamic range requirements for large area surveys.

In order to reach a design whose cost can be estimated,

decisions on whether, or when, to adopt these new

technologies will have to be made during the PrepSKA

program. Pathfinder and Design Study instruments and

programs, described in overview in [18] and selectively in

this paper, are central to informing these decisions and in

mitigating risk within the complex SKA engineering
development exercise. h
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