915 research outputs found

    Tribute to Frederick W. Whiteside, Jr.

    Get PDF
    A series of tributes to Frederick W. Whiteside, Jr., a professor at the University of Kentucky College of Law

    Genetic and childhood trauma interaction effect on age of onset in bipolar disorder: An exploratory analysis

    Get PDF
    Introduction This study investigated whether early life trauma mediates genetic effects on the age at onset (AAO) of bipolar disorder. Method Data from the BiGS Consortium case samples (N = 1119) were used. Childhood traumatic events were documented using the Childhood Life Events Scale (CLES). Interaction between occurrence of childhood trauma and common genetic variants throughout the genome was tested to identify single nucleotide polymorphic gene variants (SNPs) whose effects on bipolar AAO differ between individuals clearly exposed (CLES ≥ 2) and not exposed (CLES = 0) to childhood trauma. Results The modal response to the CLES was 0 (N = 480), but an additional 276 subjects had CLES = 1, and 363 subjects reported 2 or more traumatic lifetime events. The distribution of age at onset showed a broad peak between ages 12 and 18, with the majority of subjects having onset during that period, and a significant decrease in age of onset with the number of traumatic events. No single SNP showed a statistically significant interaction with the presence of traumatic events to impact bipolar age at onset. However, SNPs in or near genes coding for calcium channel activity-related proteins (Gene Ontology: 0005262) were found to be more likely than other SNPs to show evidence of interaction using the INRICH method (p < 0.001). Limitations Retrospective ascertainment of trauma and AAO. Conclusion Interaction effects of early life trauma with genotype may have a significant effect on the development and manifestation of bipolar disorder. These effects may be mediated in part by genes involved in calcium signaling

    Advancing Administrative Supports for Research Development

    Get PDF
    Research intensive universities have raised the bar for all academic units, expecting them to increase research grants and contracts to support knowledge creation and scholarship. Similarly, performance requirements for faculty have changed, with annual reviews and tenure and promotion decisions weighting obtaining grants along with publication of scholarly products, teaching effectiveness, and service to the school, university and community. These expectations compel Deans and Directors of schools of social work to undertake new roles related to research development and administrative capacity building in order to help faculty and their units succeed. Social work schools and departments must stay or become strategically positioned in their university or college, even as the context for research development has been dramatically altered as colleges and universities invest in the nanosciences or bio- technology rather than the social sciences. A 4billionnanoscienceoperationdwarfsthe4 billion nanoscience operation dwarfs the 20 million that a robust research enterprise that a few schools of social work enjoy. This paper highlights some of the opportunities, barriers, challenges, as well as stepping stones to success in the process of building research supports and infrastructures. Drawing upon presentations at recent meetings of the National Association of Deans and Directors of Schools of Social Work (NADD) that have been organized by the Institute of Social Work Research (IASWR), we feature several examples of approaches advancing supports for research development. Brief scenarios illustrating efforts underway at several schools depict challenging and often rewarding research capacity building endeavors. This paper presents the perspective of several Deans and Directors in the development of administrative research supports. The paper also features one model for a supportive research administration structure in the pre- and post-award environment

    Linearized semiclassical initial value time correlation functions with maximum entropy analytic continuation

    Get PDF
    The maximum entropy analytic continuation (MEAC) method is used to extend the range of accuracy of the linearized semiclassical initial value representation (LSC-IVR)/classical Wigner approximation for real time correlation functions. The LSC-IVR provides a very effective 'prior' for the MEAC procedure since it is very good for short times, exact for all time and temperature for harmonic potentials (even for correlation functions of nonlinear operators), and becomes exact in the classical high temperature limit. This combined MEAC+LSC/IVR approach is applied here to two highly nonlinear dynamical systems, a pure quartic potential in one dimensional and liquid para-hydrogen at two thermal state points (25K and 14K under nearly zero external pressure). The former example shows the MEAC procedure to be a very significant enhancement of the LSC-IVR, for correlation functions of both linear and nonlinear operators, and especially at low temperature where semiclassical approximations are least accurate. For liquid para-hydrogen, the LSC-IVR is seen already to be excellent at T = 25K, but the MEAC procedure produces a significant correction at the lower temperature (T = 14K). Comparisons are also made to how the MEAC procedure is able to provide corrections for other trajectory-based dynamical approximations when used as priors

    Investigation of Structure and Transport in Li-Doped Ionic Liquid Electrolytes: [pyr14][TFSI], [pyr13][FSI] and [EMIM][BF4]

    Get PDF
    Ionic liquid electrolytes have been proposed as a means of improving the safety and cycling behavior of advanced lithium batteries; however, the properties of these electrolytes under high lithium doping are poorly understood. Here, we employ both polarizable molecular dynamics simulation and experiment to investigate the structure, thermodynamics and transport of three potential electrolytes, N-methyl-Nbutylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N- methyl-Npropylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-- methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li-salt concentration and temperature. Structurally, Li(+) is shown to be solvated by three anion neighbors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of x(sub Li) we find the presence of lithium aggregates. Furthermore, the computed density, diffusion, viscosity, and ionic conductivity show excellent agreement with experimental data. While the diffusion and viscosity exhibit a systematic decrease and increase, respectively, with increasing x(sub Li), the contribution of Li(+) to ionic conductivity increases until reaching a saturation doping level of x(sub Li) is approximately 0.10. Comparatively, the Li(+) conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1 - 0.3 mS/cm. The differences in Li(+) transport are reflected in the residence times of Li(+) with the anions, which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, we comment on the relative kinetics of Li(+) transport in each liquid and we present strong evidence for transport through anion exchange (hopping) as opposed to the net motion of Li(+) with its solvation shell (vehicular)

    Investigation of Structure and Transport in Li-Doped Ionic Liquid Electrolytes: [pyr14][TFSI], [pyr13][FSI], [EMIM][BF4]

    Get PDF
    Ionic liquid electrolytes have been proposed as a means of improving the safety and cycling behavior of advanced lithium batteries; however, the properties of these electrolytes under high lithium doping are poorly understood. Here, we employ both polarizable molecular dynamics simulation and experiment to investigate the structure, thermodynamics and transport of three potential electrolytes, N-methyl-N-butylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N- methyl-N-propylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-- methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li (-) salt concentration and temperature. Structurally, Li(+) is shown to be solvated by three anion neighbors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of xLi we find the presence of lithium aggregates. Furthermore, the computed density, diffusion, viscosity, and ionic conductivity show excellent agreement with experimental data. While the diffusion and viscosity exhibit a systematic decrease and increase, respectively, with increasing xLi, the contribution of Li(+) to ionic conductivity increases until reaching a saturation doping level of xLi 0.10. Comparatively, the Li(+) conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1-0.3 mScm. The differences in Li(+) transport are reflected in the residence times of Li(+) with the anions, which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, we comment on the relative kinetics of Li(+) transport in each liquid and we present strong evidence for transport through anion exchange (hopping) as opposed to the net motion of Li(+) with its solvation shell (vehicular)

    Darwin -— an experimental astronomy mission to search for extrasolar planets

    Get PDF
    As a response to ESA call for mission concepts for its Cosmic Vision 2015–2025 plan, we propose a mission called Darwin. Its primary goal is the study of terrestrial extrasolar planets and the search for life on them. In this paper, we describe different characteristics of the instrument

    Genome-Wide Association of Bipolar Disorder Suggests an Enrichment of Replicable Associations in Regions near Genes

    Get PDF
    Although a highly heritable and disabling disease, bipolar disorder's (BD) genetic variants have been challenging to identify. We present new genotype data for 1,190 cases and 401 controls and perform a genome-wide association study including additional samples for a total of 2,191 cases and 1,434 controls. We do not detect genome-wide significant associations for individual loci; however, across all SNPs, we show an association between the power to detect effects calculated from a previous genome-wide association study and evidence for replication (P = 1.5×10−7). To demonstrate that this result is not likely to be a false positive, we analyze replication rates in a large meta-analysis of height and show that, in a large enough study, associations replicate as a function of power, approaching a linear relationship. Within BD, SNPs near exons exhibit a greater probability of replication, supporting an enrichment of reproducible associations near functional regions of genes. These results indicate that there is likely common genetic variation associated with BD near exons (±10 kb) that could be identified in larger studies and, further, provide a framework for assessing the potential for replication when combining results from multiple studies
    • …
    corecore