392 research outputs found

    Vibrationally resolved electron impact electronic excitation of BeH

    Get PDF
    Beryllium is being adopted for plasma facing walls in fusion reactors. This has led to the observation of emissions from the A 2Π state of beryllium hydride. Use of these emissions to monitor Be erosion requires electron impact excitation rates. Cross sections for electron impact vibrational excitation within the X 2Σ+ state and vibrationally resolved electronic excitation to the A 2Π state are reported for BeH, BeD and BeT. Electron collisions are studied at a range of internuclear separations using the UK molecular R-matrix (UKRmol+) codes. Electronic excitation is studied both within the Franck–Condon approximation and by explicit averaging of the T-matrix elements. It is found that (a) inclusion of the effect of higher partial waves using the Born approximation leads to significant increases in the cross sections and (b) the Franck–Condon approximation underestimates the importance of collisions for which the vibrational state changes during electronic excitation

    ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons

    Get PDF
    BACKGROUND: ASIC3, the most sensitive of the acid-sensing ion channels, depolarizes certain rat sensory neurons when lactic acid appears in the extracellular medium. Two functions have been proposed for it: 1) ASIC3 might trigger ischemic pain in heart and muscle; 2) it might contribute to some forms of touch mechanosensation. Here, we used immunocytochemistry, retrograde labelling, and electrophysiology to ask whether the distribution of ASIC3 in rat sensory neurons is consistent with either of these hypotheses. RESULTS: Less than half (40%) of dorsal root ganglion sensory neurons react with anti-ASIC3, and the population is heterogeneous. They vary widely in cell diameter and express different growth factor receptors: 68% express TrkA, the receptor for nerve growth factor, and 25% express TrkC, the NT3 growth factor receptor. Consistent with a role in muscle nociception, small (<25 μm) sensory neurons that innervate muscle are more likely to express ASIC3 than those that innervate skin (51% of small muscle afferents vs. 28% of small skin afferents). Over 80% of ASIC3+ muscle afferents co-express CGRP (a vasodilatory peptide). Remarkably few (9%) ASIC3+ cells express P2X3 receptors (an ATP-gated ion channel), whereas 31% express TRPV1 (the noxious heat and capsaicin-activated ion channel also known as VR1). ASIC3+/CGRP+ sensory nerve endings were observed on muscle arterioles, the blood vessels that control vascular resistance; like the cell bodies, the endings are P2X3- and can be TRPV1+. The TrkC+/ASIC3+ cell bodies are uniformly large, possibly consistent with non-nociceptive mechanosensation. They are not proprioceptors because they fail two other tests: ASIC3+ cells do not express parvalbumin and they are absent from the mesencephalic trigeminal nucleus. CONCLUSION: Our data indicates that: 1) ASIC3 is expressed in a restricted population of nociceptors and probably in some non-nociceptors; 2) co-expression of ASIC3 and CGRP, and the absence of P2X3, are distinguishing properties of a class of sensory neurons, some of which innervate blood vessels. We suggest that these latter afferents may be muscle metaboreceptors, neurons that sense the metabolic state of muscle and can trigger pain when there is insufficient oxygen

    Synthetic spectra of BeH, BeD and BeT for emission modeling in JET plasmas

    Get PDF
    A theoretical model for isotopologues of beryllium monohydride, BeH, BeD and BeT, A 2Π{}^{2}{\rm{\Pi }} to X 2Σ+{}^{2}{{\rm{\Sigma }}}^{+} visible and X 2Σ+{}^{2}{{\rm{\Sigma }}}^{+} to X 2Σ+{}^{2}{{\rm{\Sigma }}}^{+} infrared rovibronic spectra is presented. The MARVEL procedure is used to compute empirical rovibronic energy levels for BeH, BeD and BeT, using experimental transition data for the X 2Σ+{}^{2}{{\rm{\Sigma }}}^{+}, A 2Π{}^{2}{\rm{\Pi }}, and C 2Σ+{}^{2}{{\rm{\Sigma }}}^{+} states. The energy levels from these calculations are then used in the program Duo to produce a potential energy curve for the ground state, X 2Σ{}^{2}{\rm{\Sigma }}, and to fit an improved potential energy curve for the first excited state, A 2Π{}^{2}{\rm{\Pi }}, including a spin–orbit coupling term, a Λ-doubling state to state (A–X states) coupling term, and Born–Oppenheimer breakdown terms for both curves. These, along with a previously computed ab initio dipole curve for the X and A states are used to generate vibrational-rotational wavefunctions, transition energies and A-values. From the transition energies and Einstein coefficients, accurate assigned synthetic spectra for BeH and its isotopologues are obtained at given rotational and vibrational temperatures. The BeH spectrum is compared with a high resolution hollow-cathode lamp spectrum and the BeD spectrum with high resolution spectra from JET giving effective vibrational and rotational temperatures. Full A–X and X–X line lists are given for BeH, BeD and BeT and provided as supplementary data on the ExoMol website

    Veratridine produces distinct calcium response profiles in mouse Dorsal Root Ganglia neurons.

    Get PDF
    Nociceptors are a subpopulation of dorsal root ganglia (DRG) neurons that detect noxious stimuli and signal pain. Veratridine (VTD) is a voltage-gated sodium channel (VGSC) modifier that is used as an "agonist" in functional screens for VGSC blockers. However, there is very little information on VTD response profiles in DRG neurons and how they relate to neuronal subtypes. Here we characterised VTD-induced calcium responses in cultured mouse DRG neurons. Our data shows that the heterogeneity of VTD responses reflects distinct subpopulations of sensory neurons. About 70% of DRG neurons respond to 30-100 μM VTD. We classified VTD responses into four profiles based upon their response shape. VTD response profiles differed in their frequency of occurrence and correlated with neuronal size. Furthermore, VTD response profiles correlated with responses to the algesic markers capsaicin, AITC and α, β-methylene ATP. Since VTD response profiles integrate the action of several classes of ion channels and exchangers, they could act as functional "reporters" for the constellation of ion channels/exchangers expressed in each sensory neuron. Therefore our findings are relevant to studies and screens using VTD to activate DRG neurons

    Breaking the superfluid speed limit in a fermionic condensate

    Get PDF
    Coherent condensates appear as emergent phenomena in many systems. They share the characteristic feature of an energy gap separating the lowest excitations from the condensate ground state. This implies that a scattering object, moving through the system with high enough velocity for the excitation spectrum in the scatterer frame to become gapless, can create excitations at no energy cost, initiating the breakdown of the condensate—the well-known Landau velocity. Whereas, for the neutral fermionic superfluid 3He-B in the T = 0 limit, flow around an oscillating body displays a very clear critical velocity for the onset of dissipation, here we show that for uniform linear motion there is no discontinuity whatsoever in the dissipation as the Landau critical velocity is passed and exceeded. Given the importance of the Landau velocity for our understanding of superfluidity, this result is unexpected, with implications for dissipative effects of moving objects in all coherent condensate systems

    Emerging Infectious Disease leads to Rapid Population Decline of Common British Birds

    Get PDF
    Emerging infectious diseases are increasingly cited as threats to wildlife, livestock and humans alike. They can threaten geographically isolated or critically endangered wildlife populations; however, relatively few studies have clearly demonstrated the extent to which emerging diseases can impact populations of common wildlife species. Here, we report the impact of an emerging protozoal disease on British populations of greenfinch Carduelis chloris and chaffinch Fringilla coelebs, two of the most common birds in Britain. Morphological and molecular analyses showed this to be due to Trichomonas gallinae. Trichomonosis emerged as a novel fatal disease of finches in Britain in 2005 and rapidly became epidemic within greenfinch, and to a lesser extent chaffinch, populations in 2006. By 2007, breeding populations of greenfinches and chaffinches in the geographic region of highest disease incidence had decreased by 35% and 21% respectively, representing mortality in excess of half a million birds. In contrast, declines were less pronounced or absent in these species in regions where the disease was found in intermediate or low incidence. Also, populations of dunnock Prunella modularis, which similarly feeds in gardens, but in which T. gallinae was rarely recorded, did not decline. This is the first trichomonosis epidemic reported in the scientific literature to negatively impact populations of free-ranging non-columbiform species, and such levels of mortality and decline due to an emerging infectious disease are unprecedented in British wild bird populations. This disease emergence event demonstrates the potential for a protozoan parasite to jump avian host taxonomic groups with dramatic effect over a short time period

    Capsaicin- resistant arterial baroreceptors

    Get PDF
    BACKGROUND: Aortic baroreceptors (BRs) comprise a class of cranial afferents arising from major arteries closest to the heart whose axons form the aortic depressor nerve. BRs are mechanoreceptors that are largely devoted to cardiovascular autonomic reflexes. Such cranial afferents have either lightly myelinated (A-type) or non-myelinated (C-type) axons and share remarkable cellular similarities to spinal primary afferent neurons. Our goal was to test whether vanilloid receptor (TRPV1) agonists, capsaicin (CAP) and resiniferatoxin (RTX), altered the pressure-discharge properties of peripheral aortic BRs. RESULTS: Periaxonal application of 1 μM CAP decreased the amplitude of the C-wave in the compound action potential conducting at <1 m/sec along the aortic depressor nerve. 10 μM CAP eliminated the C-wave while leaving intact the A-wave conducting in the A-δ range (<12 m/sec). These whole nerve results suggest that TRPV1 receptors are expressed along the axons of C- but not A-conducting BR axons. In an aortic arch – aortic nerve preparation, intralumenal perfusion with 1 μM CAP had no effect on the pressure-discharge relations of regularly discharging, single fiber BRs (A-type) – including the pressure threshold, sensitivity, frequency at threshold, or maximum discharge frequency (n = 8, p > 0.50) but completely inhibited discharge of an irregularly discharging BR (C-type). CAP at high concentrations (10–100 μM) depressed BR sensitivity in regularly discharging BRs, an effect attributed to non-specific actions. RTX (≤ 10 μM) did not affect the discharge properties of regularly discharging BRs (n = 7, p > 0.18). A CAP-sensitive BR had significantly lower discharge regularity expressed as the coefficient of variation than the CAP-resistant fibers (p < 0.002). CONCLUSION: We conclude that functional TRPV1 channels are present in C-type but not A-type (A-δ) myelinated aortic arch BRs. CAP has nonspecific inhibitory actions that are unlikely to be related to TRV1 binding since such effects were absent with the highly specific TRPV1 agonist RTX. Thus, CAP must be used with caution at very high concentrations

    A Molecular Epidemiological and Genetic Diversity Study of Tuberculosis in Ibadan, Nnewi and Abuja, Nigeria

    Get PDF
    Background Nigeria has the tenth highest burden of tuberculosis (TB) among the 22 TB high-burden countries in the world. This study describes the biodiversity and epidemiology of drug-susceptible and drug-resistant TB in Ibadan, Nnewi and Abuja, using 409 DNAs extracted from culture positive TB isolates. Methodology/Principal Findings DNAs extracted from clinical isolates of Mycobacterium tuberculosis complex were studied by spoligotyping and 24 VNTR typing. The Cameroon clade (CAM) was predominant followed by the M. africanum (West African 1) and T (mainly T2) clades. By using a smooth definition of clusters, 32 likely epi-linked clusters related to the Cameroon genotype family and 15 likely epi-linked clusters related to other “modern” genotypes were detected. Eight clusters concerned M. africanum West African 1. The recent transmission rate of TB was 38%. This large study shows that the recent transmission of TB in Nigeria is high, without major regional differences, with MDR-TB clusters. Improvement in the TB control programme is imperative to address the TB control problem in Nigeria

    Local Translation in Primary Afferent Fibers Regulates Nociception

    Get PDF
    Recent studies have demonstrated the importance of local protein synthesis for neuronal plasticity. In particular, local mRNA translation through the mammalian target of rapamycin (mTOR) has been shown to play a key role in regulating dendrite excitability and modulating long-term synaptic plasticity associated with learning and memory. There is also increased evidence to suggest that intact adult mammalian axons have a functional requirement for local protein synthesis in vivo. Here we show that the translational machinery is present in some myelinated sensory fibers and that active mTOR-dependent pathways participate in maintaining the sensitivity of a subpopulation of fast-conducting nociceptors in vivo. Phosphorylated mTOR together with other downstream components of the translational machinery were localized to a subset of myelinated sensory fibers in rat cutaneous tissue. We then showed with electromyographic studies that the mTOR inhibitor rapamycin reduced the sensitivity of a population of myelinated nociceptors known to be important for the increased mechanical sensitivity that follows injury. Behavioural studies confirmed that local treatment with rapamycin significantly attenuated persistent pain that follows tissue injury, but not acute pain. Specifically, we found that rapamycin blunted the heightened response to mechanical stimulation that develops around a site of injury and reduced the long-term mechanical hypersensitivity that follows partial peripheral nerve damage - a widely used model of chronic pain. Our results show that the sensitivity of a subset of sensory fibers is maintained by ongoing mTOR-mediated local protein synthesis and uncover a novel target for the control of long-term pain states
    corecore