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Coherent condensates appear as emergent phenomena in many systems1-8, sharing the 

characteristic feature of an energy gap separating the lowest excitations from the 

condensate ground state. This implies that a scattering object, moving through the 

system with high enough velocity for the excitation spectrum in the scatter frame to 

become gapless, can create excitations at no energy cost, initiating the breakdown of the 

condensate1,9-13.  This limit is the well-known Landau velocity9.  While, for the neutral 

fermionic superfluid 3He-B in the T=0 limit, flow around an oscillating body displays a 

very clear critical velocity for the onset of dissipation12,13, here we show that for uniform 

linear motion there is no discontinuity whatsoever in the dissipation as the Landau 

critical velocity is passed and exceeded. Since the Landau velocity is such a pillar of our 

understanding of superfluidity, this is a considerable surprise, with implications for the 

understanding of the dissipative effects of moving objects in all coherent condensate 

systems. 	

 

The Landau critical velocity marks the minimum velocity at which an object moving through 

a condensate can generate excitations with zero energy cost9.  In the frame of the object, 

moving at velocity v relative to the fluid, excitations of momentum p are shifted, by Galilean 

transformation, from energy E to (E - v.p).  Superfluid 3He has a BCS dispersion curve1 with 

energy minima, E = Δ at momenta ±pF.  Therefore excitation generation should begin as soon 

as one energy minimum reaches zero, i.e. when the velocity reaches the Landau critical value, 

vL ≈ Δ/pF.  
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We can investigate vL in condensates in two limiting regimes, i.e. for the motion of 

microscopic objects (e.g. ions) or for that of macroscopic objects. For ions, the critical 

velocity has been observed in superfluid 4He at the expected value of ≈ 46 m s-1 at 25 bar10 (at 

lower pressures vortex nucleation sets in at lower velocities and the critical velocity is 

difficult to measure), and confirmed in superfluid 3He-B at 18 bar as consistent with the 

expected ≈ 67 mm s-1 value11.  For macroscopic objects, the onset of extra dissipation at vL in 

superfluid 4He cannot be observed since damping from vorticity becomes prohibitive at much 

lower velocities.   However, while macroscopic objects can be readily accelerated at the 

lowest temperatures to the much lower critical velocities in superfluid 3He, the experimental 

picture is somewhat misleading. 

 

In superfluid 3He, oscillating macroscopic objects do indeed show a sudden increase in 

damping12, but at a velocity of only  ≈ vL/3, arising from the emission of quasiparticle 

excitations from the pumping of surface excitations driven by the reciprocating motion13. 

Although this mechanism does not involve bulk pair breaking, it has created the impression 

that a Landau critical velocity has indeed been confirmed in 3He, which is not the case. 

 

What should we expect for uniform motion?  The textbook prediction suggests that at vL all 

details of the process become irrelevant. Condensate breakdown becomes inevitable; the 

constituent Cooper pairs separate; and the properties rapidly approach those of the normal 

liquid.  Under our experimental conditions, this should be spectacular, since the damping 

force in the normal fluid is some five orders of magnitude higher than that of the superfluid.  

Despite this expectation that at vL the dissipation should suddenly increase to very high 
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values, here we show that in fact no discontinuity at all is observed in the damping as vL is 

exceeded. 

 

The measurements are made in 3He-B at zero pressure, between 140 and 190 µK (in the 

quasiparticle ballistic limit) in the cooling cell shown in Fig. 1 (see Methods).  The 

macroscopic “moving object” is a wire formed into a rectangular shape.  We can move the 

wire over a range of velocities in two ways: with a single stroke of steady uniform velocity; 

or by oscillation at 66Hz, the mechanical resonant frequency.   For oscillatory motion the 

damping force as a function of velocity is directly measured from the resonance. For steady 

motion we infer the damping from the thermal response, as shown in Fig. 2. Since the 

temperature profile of rise and slow return to equilibrium is invariant in our temperature 

range, we derive the damping force from the pulse height as explained in Methods.   We 

should emphasize that the damping comes almost entirely from the emission of quasiparticles 

with only a microscopic fraction going into vortex creation14.  

 

Figure 3 shows the velocity dependence of the damping force on the moving wire for both 

AC and DC motion at around 150 µK.   The oscillatory motion shows the expected rapid rise 

starting at approximately vL/3.  However, the DC results are strikingly different, showing 

only a very slow rise, again starting at a v ≈ vL/3, but with no discontinuity whatsoever as vL/3 

or  vL are passed. 

 

A hint to the processes involved comes from the oscillatory behaviour, for which we have a 

reasonable understanding. We use the simple model of Lambert13 where we assume a gas of 

quasiparticle states in the region of depressed gap near the wire surface.  The precise nature 

of these states is complex since the order parameter near the wall has directional structure 
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depending on the scattering nature of the surface. The states may have Majorana and Andreev 

bound state properties15.  However, in the plane of the surface we assume these states are 

mobile and have a gapless dispersion curve.  This provides a toy model for presenting the 

data but cannot be far from the truth as these states must transform seamlessly into bulk 

quasiparticle states as the energy exceeds the bulk gap.  The states which dominate the 

process are those at the extrema of the wire surface where the superfluid backflow is greatest. 

Figure 4 shows the appropriate dispersion curves in the plane of the wall and along the 

direction of motion of the wire, for both surface and bulk states, in the moving-wire frame.  

For simplicity, we assume that T = 0 and that the surface states have zero gap. (Note that 

owing to the pure potential flow field around a cylinder, when the wire moves at velocity v, 

the liquid at the wire surface moves at a maximum relative velocity of 2v.)	 

 

As the wire moves, the surface-state dispersion curve tips.  Elastic collisions with the wire 

allow excitations to cross the curve (the cross-branch processes of panel b), populating states 

on the RHS and depleting those on the LHS.  Given a constant velocity, at some point the 

distribution of excitations comes into equilibrium with the wire (panel c').  However, if we 

accelerate the wire fast enough to prevent these cross-branch processes from maintaining 

equilibrium, excitations on the LHS can be elevated to energies of 2vpF (panels b and c).  

Occasional cross-branch processes transfer some of these excitations across to the opposite 

branch.  When the energy of these excitations matches the energy of the RHS dispersion-

curve minimum for bulk liquid, which is falling as Δ - vpF, they can enter the bulk via the 

escape process (panel c).   This loss of local excitations represents dissipation, and occurs as 

soon as 2vpF = Δ - vpF, i.e. when v = Δ/3pF, the “critical velocity” measured for oscillatory 

motion. 
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We can draw two conclusions.  First, this can only happen if the cross-branch processes are 

relatively slow, but not too slow.   If very fast, the branch distributions would always remain 

in equilibrium with the wire (as in panel c' where no escape process is possible at v = Δ/3pF), 

and if very slow, no branch equalisation occurs at all and again no escape processes are 

possible.  

 

Secondly, this must be a transient effect, since at constant velocity the cross-branch processes 

must ultimately prevail and the distribution will become that of panel c'. In other words, as 

we accelerate the wire we should see a pulse of excitations emitted as soon as the velocity 

reaches v = Δ/3pF, but if the velocity increases no further, the number of excitations able to 

escape will become depleted and the dissipation will cease. Of course, in oscillatory motion 

this does not happen since on reaching maximum velocity, the motion reverses and the whole 

process repeats in the opposite direction, with the emission of further excitations. 

 

Now consider the effect of an initial acceleration to a sustained steady velocity.  Starting from 

zero we will see the same behaviour as in panels a-c in Fig. 4.  As the velocity increases 

beyond vL/3, surface states over a larger region around the wire can access the escape process, 

(i.e. not just at the points of maximum surface flow velocity), as in Fig. 5.  This increases 

both the escape probability and the angular range of emission16, increasing the damping force 

during acceleration (panels d and e). When vL is reached (panel f), a new escape process does 

indeed become available as quasiparticle excitations on the LHS can now escape directly into 

the LHS minimum of the bulk dispersion curve.  However, again nothing sudden occurs at 

this point, only steady growth in the escape probability.  
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Suppose the acceleration stops to give a final steady velocity above vL.  The surface 

excitation distributions will gradually come into equilibrium with the wire, cutting off the 

escape processes. Thus in this steady state the dissipation ceases.  Subsequently, during the 

deceleration at the end of the stroke, the converse process comes into play yielding a further 

burst of escaping excitations. 

 

For finite temperatures we already know the damping force arising from the background of 

thermally-excited quasiparticles17 (blue dashed line in Fig. 3).  The escape processes add the 

extra component indicated in Fig. 3, but there is no jump at vL. 

 

We emphasize that these are mechanisms for promoting local surface excitations into the 

bulk condensate. (This is somewhat akin to the “baryogenesis” analogue seen when 

excitations localised in vortex cores are ejected when the vortices are moved18.)    

Paradoxically, there is no mechanism for breaking of Cooper pairs in the bulk, despite the 

wire moving through the condensate at a velocity above the pair-breaking minimum.  

 

Of course, the Landau argument has to be correct, but it seems that for 3He-B, the “boundary 

layer” of depressed gap shields the bulk superfluid from the ravages of the Landau process.   

This “shielding” arises because, at near-zero temperature, there is no mechanism for the 

condensate to gain information about what the moving body is doing on the other side of the 

boundary layer. Related effects are seen in rotating superfluid 3He-B where at very low 

temperatures the lack of normal fluid disconnects the superfluid from the rotating container19-

21.  Conversely, microscopic objects (smaller than the coherence length) in the liquid have 

only a marginal disturbing effect on the superfluid order parameter and are thus fully exposed 

to the bulk condensate.  
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Our results were consistent up to 190 µK. At higher temperatures, the growing normal fluid 

fraction must come into play to transmit this information to the bulk condensate, allowing the 

“classical” critical velocity behaviour to emerge.  Unfortunately, the greater dissipation from 

the increasing normal fluid fraction rules out measurements in this regime. Perhaps this effect 

can only be studied in our “pure” condensate.  For the future, the same process could be 

profitably studied in 3He-A where, depending on orientation, the anisotropic order parameter 

presents either a full BCS gap or nodes where vL would be zero22,23. 

 

The results reported here should be of relevance to other fermionic condensates as well as to 

superfluid 3He.  Further, the lack of any great increase in the damping force as an object 

moves through the superfluid above the Landau velocity suggests that it may be possible to 

construct mechanical devices immersed in the superfluid.  For example, small pumps with 

minimal dissipation would have many uses.  
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Figure 1 | The experimental cell.  a, View of the double demagnetisation cooling cell (outer 

cell muted). The adiabatic demagnetisation refrigerant comprises high-purity copper plates 

coated in sintered silver for thermal contact and immersed in the superfluid 3He sample filling 

the cell	and cooled to	≈ 140 µK.  b, The moving wire “goalpost” (crossbar width 9 mm) is 

driven perpendicular to its plane through the 3He and can move over a horizontal distance of 

±6 mm before touching the inner cell wall. Its position is sensed by detection coils in the 

outer cell.  The temperature, or thermal quasiparticle density, is monitored by vibrating wire 

and quartz tuning fork resonators. We calibrate the position of the wire by moving it until it is 

stopped by the cell wall in each direction (see text) providing the two fixed points needed to 

determine the absolute position.   The temperature rise caused by the dissipation is monitored 

by the vibrating wire and quartz tuning fork thermometers. 
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Figure 2 | The sustained DC velocity method and measurement.  The upper panel shows 

the very accurate linear stroke of the moving wire, sustained over a distance of 2 mm, with 

blue bands indicating the periods of initial acceleration and of final deceleration.  The lower 

panel shows the associated temperature response, with the period of the linear motion shown 

by the red band. The line shape is consistent with a burst of dissipation during the initial 

acceleration and a second during the final deceleration, see Methods.  (In principle, we could 

infer the drag force from the feedback current needed to maintain the uniform motion of the 

wire. Unfortunately, the wire inertia dominates, and any contribution from the liquid is 

negligible.)  
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Figure 3 | The damping force as a function of velocity for oscillatory (AC) motion 

compared with steady (DC) motion.   The Landau velocity, Δ/pF, is marked and the region 

above the Landau velocity tinted red for clarity. a,  The measured dissipation for oscillatory 

(AC) motion shows a very sudden rise when the peak velocity reaches vL/3. The small 

dissipation arising from the residual thermal gas of quasiparticles is also indicated.  Based on 

the observations for ionic motion in both superfluid 3He and 4He we might naively expect the 

dissipation for steady motion to rise rapidly above the Landau velocity, as indicated10, 11, 12.  

b, However, our measurements for the steady (DC) motion at a similar temperature show 

only a slow rise, (arising from the same escape of local excitations which leads to the 

dissipation in the oscillatory motion, see text) but no sudden increase in the damping force, 

even as the Landau critical velocity of vL = Δ/pF is passed (ringed).  We see this behaviour 

independently of temperature up to the highest velocities and temperatures at which we can 

measure, i.e. ≈ 2.5 vL and 190 µK. (The cell gradually warms while the data is taken as 

indicated by the temperature ranges in the figure.   This is a small effect for the DC data of 

part b, but the large dissipation of the higher velocity AC data of part a causes a significant 

temperature rise.) 
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Figure 4 | The processes involved in oscillatory (AC) motion.  Shown are the dispersion 

curves for the assumed zero-gap excitations at the cylindrical wire surface (in black) and 

those fully-gapped in the bulk liquid (blue) (see text). We use the convention of showing all 

of the filled states at T = 0 (red = quasiparticles, blue = quasiholes).  Only the first panel has 

labelled axes for clarity. For pure potential flow the maximum fluid velocity is 2v when the 

wire moves at v. a, wire at rest. b, wire moves slowly; surface state curves tip by 2vpF and 

bulk by vpF; surface state excitations scatter elastically (“Cross-branch”). c, excitations start 

to enter the bulk when v = Δ/3pF (“Escape”); dissipation begins. c', quasiparticle distributions 

reach equilibrium with moving wire; escape processes cease.  
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Figure 5 | The processes involved in steady (DC) motion. Dispersion curves for the zero-

gap excitations at the cylindrical wire surface and the fully-gapped bulk, in the wire rest 

frame, for velocities from vL/3 to greater than vL. The colour conventions and the axes are as 

in Figure 4.  d, e, the number of surface states that can scatter and escape increases. f, a new 

process allows surface states to escape directly into the bulk left-hand branch, but there is no 

extra pair-breaking in the bulk even though the wire moves faster than vL.    
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Methods  

 

The experiments are made in a Lancaster-style nested nuclear demagnetisation cell24 for 

cooling liquid 3He, see Fig. 1 in the main text. The moving wire is mounted inside the lower 

end of the inner cell. Its position is determined by two detector coils in the outer cell.  The 

wire is a 100 µm diameter superconducting NbTi wire bent into a goalpost shape as shown, 

with height 25 mm and leg spacing 9 mm.  In the small vertical external field of 73 mT, a 

current is applied across the wire and the Lorentz force on the current applies a horizontal 

force on the wire allowing us to move it or to oscillate it.  The experiments are all made in 
3He-B at 0 bar pressure, in the temperature range of 140 to 190 µK, well below the 

condensate transition temperature Tc = 0.929 mK. This is in the ballistic quasiparticle limit, 

where the mean free path of excitations is much larger than any of the dimensions of the 

experimental cell. 

 

For the AC oscillatory mode measurement we use standard techniques25,26 to measure the 

moving wire at its resonant frequency, 66 Hz. The AC driving current amplitude I is stepped 

upwards in small steps.  The voltage generated across the resonator, as the cross-bar cuts the 

applied magnetic flux, is determined by a lock-in amplifier at each step. At low velocity, 

where the wire is very lightly damped, the amplitude sweep must be carried out slowly in 

order to avoid unwanted ringing. The current is converted to driving force through the 

relationship F = BdI where B is the magnetic field and d the length of the wire crossbar. The 

measured AC voltage V is converted to velocity using v = V/(Bd). 

 

For the DC measurements at steady velocity, the position of the wire is inferred from the 

response of the pick-up coils to a small high frequency (92 kHz) signal added to the driving 

current.  To calibrate the wire position, we gradually increase the drive current until the wire 

touches the cell wall, at which point the signal in the pick-up coil increases no further, a clear 

signature that the wall has been reached. We then repeat the process in the opposite direction.  

Knowing the two extreme positions, we can now accurately determine the position of the 

wire crossbar at any intermediate point, and we can thereby also derive the spring constant of 

the wire. 

 

To make a measurement, we move the wire at a constant velocity from a starting point to an 

end point a few mm away. The ramp provides a short acceleration period, followed by a 
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period of constant velocity, ending with a short deceleration stage, as shown in Fig. 2.  

Accelerating and maintaining the constant velocity requires a carefully profiled current ramp, 

computed from the dynamical properties of the wire-fluid system. This active control 

removes transient effects at the beginning and end of the ramp to ensure that the wire never 

moves faster that the target DC velocity.  This scheme was devised by RS, and a similar 

scenario is described by DEZ27.  Following each such stroke, the current is slowly ramped 

back to the starting point and paused for a few minutes to allow the cell to return to thermal 

equilibrium before the next measurement.  We log the output data from the driving current, 

and that from the high frequency lock-in amplifier which follows the rapid changes of the 

wire position. 

 

The quantity we wish to measure is the dissipation generated by the linear motion.  This we 

track from the resonant response of a nearby 4.5 µm NbTi filament vibrating wire resonator. 

This acts as a “thermometer” (or quasiparticle density detector)25,26 in the superfluid, 

providing the quantitative measure of the thermal disturbance caused by each stroke.  We can 

also use the quartz tuning fork28, shown in Fig. 1 (main text), with similar results. 

 

From the thermal dissipation produced we can infer the effective damping force on the wire 

for each stroke.  This conversion requires one calibration constant which we determine by 

comparison with the damping force for the oscillatory motion (which is measured directly) at 

the same temperature.  We know the quasiparticle damping very accurately at low velocities  

(v << vL)29 and thus we scale the damping force to agree with that measured for the 

oscillatory motion at low velocities (say, as for the AC sweep and  DC stroke data from Fig. 3 

which are at similar temperatures). 

 

Although we only see what appears to be a single thermal transient, our picture of the process 

implies that we should see an initial burst of dissipation during acceleration and a second 

burst during deceleration. Unfortunately the thermometer time-constant time is just too long 

to resolve such a two-pulse shape. However, we have confirmed that the overall shape of the 

measured pulse is consistent with a convolution of two similar-shaped pulses at the beginning 

and end of the stroke.  
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Data availability 

 
All data created during this research are openly available from the Lancaster University data 
archive30. 
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