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Abstract
A theoretical model for isotopologues of beryllium monohydride, BeH, BeD and BeT, A P2 to X
S+2 visible and X S+2 to X S+2 infrared rovibronic spectra is presented. The MARVEL
procedure is used to compute empirical rovibronic energy levels for BeH, BeD and BeT, using
experimental transition data for the X S+2 , A P2 , and C S+2 states. The energy levels from these
calculations are then used in the program Duo to produce a potential energy curve for the ground
state, X S2 , and to fit an improved potential energy curve for the first excited state, A P2 ,
including a spin–orbit coupling term, a Λ-doubling state to state (A–X states) coupling term, and
Born–Oppenheimer breakdown terms for both curves. These, along with a previously computed
ab initio dipole curve for the X and A states are used to generate vibrational-rotational
wavefunctions, transition energies and A-values. From the transition energies and Einstein
coefficients, accurate assigned synthetic spectra for BeH and its isotopologues are obtained at
given rotational and vibrational temperatures. The BeH spectrum is compared with a high
resolution hollow-cathode lamp spectrum and the BeD spectrum with high resolution spectra
from JET giving effective vibrational and rotational temperatures. Full A–X and X–X line lists
are given for BeH, BeD and BeT and provided as supplementary data on the ExoMol website.

Supplementary material for this article is available online

Keywords: Fusion, emission spectrum, beryllium monohydride

(Some figures may appear in colour only in the online journal)

1. Introduction

In order to predict the erosion, migration and re-deposition of
the Be first wall in fusion devices such as JET, and in the
future ITER, and in view of impurity production and lifetime

of components, an understanding of the release and transport
of Be is an essential requirement. BeT is also important for
modeling tritium retention in beryllium containing fusion
devices. BeDX release was shown to contribute more than
50% to the total erosion in certain cases in JET D plasmas in a
limiter configuration deduced from BeD emission spectra
(Brezinsek et al 2014). Detailed studies of molecular spectra
(Duxbury et al 1998), such as those for BeH, BeD, and BeT
A–X bands can provide valuable input to codes used for
erosion modeling such as ERO (Borodin et al 2011, Lasa
et al 2018). To this end, we develop a full spectroscopic
model for BeH, BeD and BeT X S+2 and A P2 states based
on explicit potential energy curves (PECs), spin–orbit (LS)
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and Λ doubling (L+) couplings, Born–Oppenheimer break-
down (BOB) terms, and ab initio dipole curves. The PECs,
couplings, and BOB terms are derived using accurate
experimentally recorded transition frequencies. A previous
PEC fitting for the X state by Le Roy et al (2006) has been
improved upon by Dattani (2015), and further refined in this
work by fitting procedures involving the X–A state transi-
tions. The A state PEC was previously studied by Le Roy
et al (2006) and is also improved upon here. Accurate
ab initio calculations for the X state were performed by Koput
(2011). The fitting in Duo (Yurchenko et al 2018) results in a
full set of accurate transitions for BeH, BeD, and BeT from a
single set of PECs, couplings, and BOB terms (Le Roy 2017).
These data are used to determine temperatures in the exper-
imental spectra. This method of using variational nuclear
motion calculations with BOB terms to link isotopologue data
differs from the methods based on perturbation theory gen-
erally employed up until now, see Duxbury et al (1998) and
Hornkohl et al (1991). These older methods use spectroscopic
constants to calculate energies but cannot join isotopologue
data and thus do not provide predictions for yet-to-be
observed isotopologues. Our approach is similar in spirit to
that adopted by Parigger et al (2015) to model laser ablation
and by McGuire et al (2016) to model plasma ablation.

Our line lists for BeH, BeD and BeT improve on those of
Yadin et al (2012) produced as part of the ExoMol project
(Tennyson and Yurchenko 2012) both in having greater range
and improved accuracy in the transition frequencies. The
present paper aims to give a more accurate fit to the spectrum
of the BeD A–X transition than was achieved by Duxbury
et al (1998) and Björkas et al (2013) by using more accurate
transition data and allowing separated treatment of vibrational
and rotational temperatures. The use of different rotational
and vibrational temperatures, which implies there is no local
thermodynamic equilibrium (non-LTE), is expected to lead to
a more accurate description of the experimental spectrum.

We compare theoretically produced synthesized spectra
to new experimental BeD spectra recorded on JET and BeH
spectra recorded in Be hollow-cathode discharges in For-
schungszentrum Jülich. Both of these spectra were recorded
employing spectrometers with high spectral resolution in the
visible range, sufficient to resolve the rotational lines.

2. Theory

There are four main steps in generating assigned synthetic
spectra fitted with rotational and vibrational temperatures.
Experimental transitions are inverted to give vibronic energy
levels using the online implementation of MARVEL (mea-
sured active rotation vibration energy levels). These are then
used in Duo to fit PECs which can accurately reproduce all the
empirical energy levels. Empirical energy levels belonging to
the X S+2 , A P2 and C S+2 electronic states are provided by
our MARVEL treatment, although PECs were fitted only for
the X and A states. This is because of a lack of transition data
for the C state, which in any case does not give rise to a
significant feature in the JET emission spectrum. To date, the

molecular spectrum is dominated by the A–X band. Duo uses
an ab initio X state to A state transition dipole (Pitarch-Ruiz
et al 2008) to produce Einstein A-coefficients for the observed
X to A transitions. The output from Duo contains all transitions
between states within a given wavenumber range (parameter in
the Duo input, see supplementary data available online at
stacks.iop.org/JPB/51/185701/mmedia) and all the Einstein
A-coefficients associated with those energy levels. These are
used by ExoCross to generate synthetic spectra with varying
rotational and vibrational temperatures. These spectra are
compared to experimental spectra to obtain a metric for the fit.
The flowchart in figure 1 illustrates the links between the steps
of this process, each step is presented in detail below.

2.1. MARVEL

MARVEL (Furtenbacher et al 2007, Furtenbacher and Császár
2012) is a program with an online user interface which takes
highly accurate experimental transition energies and calculates
spectroscopic networks of energy levels. For BeH, BeD and
BeT we used transitions involving X S+2 , A P2 and C S+2 ,
with assigned quantum numbers taken from the literature
(Shayesteh et al 2003, Le Roy et al 2006). In particular
Le Roy et al (2006) give transition data compiled from many
sources including Shayesteh et al (2003), Colin et al (1983),
Focsa et al (1998) and De Greef and Colin (1974).

Table 1 shows the transition data sources used for input
to MARVEL. Comments on individual sources are as
follows:

[H1] Le Roy et al (2006) contains A–X transitions Δv=0
up to v″=6, Δv=+1 up to v″=6 and some transitions
for C–X with v″=0–2 and v′=6–10.
[H2] Shayesteh et al (2003) infrared, rovibrational transi-
tions, were duplicated for Σ=±0.5 giving 314 valid
transitions.
[D1] Le Roy et al (2006) contains A–X transitions Δv=0
up to v″=6, Δv=+1 up to v″=5 and some transitions
for C–X with v″=0 and v′=8–12.
[D2] Shayesteh et al (2003) infrared, rovibrational transitions,
were duplicated for Σ=±0.5 giving 328 valid transitions.
[T1] Le Roy et al (2006) contains only A–X transi-
tions Δv=0.

A small portion of the MARVEL input file for BeH is shown
in table 2 where the column format is explained. The number
of quantum numbers used for assignment here is 5. The
thresholds for changing uncertainties and for deletion were
both set to 3. The full files are given in the supplemen-
tary data.

These transitions are run through the program and var-
ious unlinked spectroscopic networks of energy levels are
generated. Separate networks can be joined with ‘linking’
transitions, e.g. joining the degenerate spin up and spin down
states of the ground state with a ‘transition’ of zero energy
from one degenerate state to another. The result of this pro-
cess is to give a large set of accurate energy levels with
quantum number assignments. For BeH and BeD the infrared
data of Shayesteh et al (2003) brings together separate
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vibrational networks. This results in two large networks
separated along the quantum number Σ, where Σ=−0.5 for
one network and Σ=0.5 for the other. These two networks
are joined with a linking transition with a ‘magic’ wave-
number, between states with opposing spin, as shown for BeH
by the transition labeled MAGIC.001 in table 2. This magic
transition is an artificial transition calculated from empirical,
effective Hamiltonian energy levels belonging to separate
networks. The frequency of the magic transition is calculated
to produce degeneracy between the states with differing spin
at low J.

The ‘good’ quantum numbers in this application are the
total rotational quantum number (J) and total parity (+ or −).
Quantum numbers of operators not strictly conserved in this
application can still be used in state assignment. They are
electronic state (X S+2 , A P2 or C S+2 ), vibrational quantum
number (v), nuclear rotational angular momentum (N), pro-
jection of total spin angular momentum (Σ), projection of

total orbital angular momentum (Λ), and the projection of
total electronic angular momentum Ω=Λ+Σ. This places
our representation in Hund’s case b (Huber and Herz-
berg 1979, Bernath 2005). Figure 2 shows the rovibrational
energy levels of the largest component network for BeH, BeD
and BeT. The almost straight lines with isotopologue-
dependent gradients are vibrational bands and the gradients
depend on the rotational constants (∝ 1/reduced mass). Since
the electronic states being represented here are doublets each
point for an energy level shown in this figure actually cor-
responds to two spin degenerate states.

2.2. Duo

Duo (Yurchenko et al 2016) is a fully-coupled rovibronic
nuclear motion code which generates rovibronic energy levels
and wavefunctions for diatomic molecules from PECs, cou-
plings between PECs, and Born–Oppenheimer correction
terms This program contains an iterative fitting procedure

Figure 1. Flow diagram showing the production of high accuracy synthetic spectra, starting in the top left corner with collated experimental
transitions and resulting in, bottom center, synthetic spectra with the best fit rotational and vibrational temperatures.

Table 1. Input transitions for MARVEL online. *See text for discussion on the comments.

Isotope Tag Range (cm−1) States Transitions Largest network Comments*

BeH
Le Roy et al (2006) 15 132–20 822 A–X, C–X 1887 1264 [H1]
Shayesteh et al (2003) 1802–2239 X–X 160 [H2]

BeD
Le Roy et al (2006) 15 164–20 619 A–X, C–X 2276 1495 [D1]
Shayesteh et al (2003) 1240–1680 X–X 167 [D2]

BeT
Le Roy et al (2006) 19 824–20 424 A–X, Δv=0 only. 524 215 [T1]
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where PECs and other terms can be fitted to experimental
data. In this way the potential form of the ground state PEC, a
Morse long range type potential (Le Roy et al 2011) as given
by Pitarch-Ruiz et al (2008), is refitted using energy levels
output from MARVEL. A new PEC, of the extended Morse
oscillator type, is fitted to the A P2 excited state using energy
levels from output from MARVEL. The A P2 PEC is mod-
ified by the addition of an LS coupling curve and an X to A
state L+ (Λ-doubling) coupling curve. Both the ground and
excited state PECs are modified by the fitting of adiabatic and
non-adiabatic BOB curves (Le Roy 2017) using the BeD and
BeT isotopologue energy level data from MARVEL. Using
BOB correction terms makes these data applicable to all
isotopologues of BeH. This allows data from all three iso-
topologues to improve the fit from the same set of PECs and
coupling terms. The fitting of BOB terms is achieved using an
iterative process in Duo. The non-adiabatic BOB term is an
additive correction to the PEC which has an increasing effect
with increasing isotope mass (from zero effect on H, to 1

2
on

D, to 2

3
on T). However due to the limited data for BeT it is

initially fitted to the BeD data and adjusted iteratively for
BeT. The adiabatic BOB term is a multiplicative factor applied
to the centrifugal potential and has greatest effect on the lighter
isotope; it is therefore initially fitted to BeH and adjusted to
model BeD and BeT. When a suitable fit is produced for both

states using the available energy levels from MARVEL, Duo
allows fittings to be performed using the transitions. This
allows a larger set of data to be used in the fitting routine, as
some of the energy levels output by MARVEL cannot be
connected to the main spectroscopic network.

Tables 3 and 4 show some of the energy levels generated
by Duo for BeH, BeD and BeT for both the X and A states,
they are each followed by the energies from MARVEL used
in the fitting for those levels. As shown earlier, in table 1,
only the v=0 component of BeT joins the main network of
transitions, as there are no measured D ¹v 0 transitions for
BeT. Overall the root mean square of the fit for each iso-
topologue is: BeH, 0.542 cm−1; BeD, 0.614 cm−1; BeT,
0.384 cm−1; for low-lying states much higher accuracies were
achieved. PECs modified and fit by Duo for the X and A
states of BeH, BeD and BeT are shown in figure 3. The zero
point energy of these curves are: 1022.0292 cm−1 for BeH;
742.7911 cm−1 for BeD; 626.2844 cm−1 for BeT. The Duo
input containing the PECs, couplings and BOB terms is given
for BeH, BeD and BeT in the supplementary data. Predis-
sociation is not included in this model.

Fully fitted PECs, couplings and BOB terms are used
in conjunction with an ab initio transition dipole curve
(Pitarch-Ruiz et al 2008) for the A to X state to generate
Einstein A-coefficients for the rovibronic transitions. Duo

Table 2. Table of MARVEL input transitions for BeH with column labels and explanations.

1 2 3 4 5 6 7 8 9 10 11 12 13

ṽ Dṽ State′ v′ ¢ +( )J 1
2 P′ Σ′ State″ v′  +( )J 1

2 P″ Σ″ ID

20.3282 0.001 1 0 1 − −0.5 1 0 1 + 0.5 MAGIC.001
15 132.42 0.1 3 0 13 + 0.5 1 9 14 − 0.5 LeRoy.00001
15 204.53 0.1 3 0 12 − 0.5 1 9 13 + 0.5 LeRoy.00002
15 224.66 0.1 3 0 22 − 0.5 1 8 23 + 0.5 LeRoy.00003
15 273.77 0.2 3 0 11 + 0.5 1 9 12 − 0.5 LeRoy.00004
15 335.3 0.1 3 0 21 + 0.5 1 8 22 − 0.5 LeRoy.00005
15 339.62 0.1 3 0 10 − 0.5 1 9 11 + 0.5 LeRoy.00006
15 401.44 0.1 3 0 9 + 0.5 1 9 10 − 0.5 LeRoy.00007
15 433.71 0.1 3 0 13 + 0.5 1 9 12 − 0.5 LeRoy.00008
15 458.91 0.1 3 0 8 − 0.5 1 9 9 + 0.5 LeRoy.00009
15 485.93 0.1 3 0 12 − 0.5 1 9 11 + 0.5 LeRoy.00010

Column Notation

1 ṽ Transition frequency (cm−1)
2 Dṽ Estimated uncertainty in transition frequency (cm−1)
3 State′ Initial electronic state, 1=X S+2 , 2=A P2 , 3=C S+2

4 v′ Initial vibrational quantum number
5 ¢ +( )J 1

2
Initial total angular momentum quantum number plus 0.5

6 P′ Initial parity quantum number
7 Σ′ Initial electron angular momentum quantum number
8 State″ Final electronic state, 1=X S+2 , 2=A P2 , 3=C S+2

9 v″ Final vibrational quantum number
10  +( )J 1

2
Final total angular momentum quantum number plus 0.5

11 P″ Final parity quantum number
12 Σ″ Final electron angular momentum quantum number
13 ID Unique ID for transition with source label and counting number
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outputs two files for the line list of each isotopologue, one
containing the list of the states involved in the transitions and
the other being a list of the transitions between states and their
A-values; this corresponds to the format of the ExoMol
database (Tennyson et al 2013, 2016). The start of the states
file and the start of the trans file for BeH are shown respec-
tively in tables 5 and 6 followed by an explanation of their
column formats. The entirety of the line list states and trans
files for each isotopologue can be found in the supplementary
data and on the ExoMol website (www.exomol.com).

3. Experiment

3.1. BeH hollow-cathode discharge spectrum

Experimental BeH spectra were recorded using a high reso-
lution visible spectrometer, in cross-dispersion arrangement
(grating and prism) covering the spectral range between 373
and 680 nm simultaneously in more than 50 orders with an
almost constant resolving power of l/DL ≈200 00, as show
by Brezinsek et al (2008). The spectral source was a ber-
yllium hollow-cathode discharge lamp with a neon/hydrogen
mixture as a working gas. Inside the lamp, the metallic Be
target plate is biased, resulting in it being bombarded by the
impurity ions with Be being sputtered, either as Be or BeHX.
The current and voltage can be varied changing the plasma
characteristics as well as the impact energy of the impinging
ions. The released Be or BeH is then excited by electron

impact leading to the emission of Be I, Be II as well as BeH
light. Figure 4 shows the experimental spectra of the BeH A–
X transition as well as the best-fitting simulated spectrum.

3.2. BeD JET edge emission spectra

An experimental BeD A–X spectrum was measured in four
consecutive JET 2.4 T, 2.0 MA discharges with comparable
conditions during the limiter phase of the pulse at 4.7–5.1 s.
During this time, the plasma was limited by the inner poloidal
limiter and BeD radiation was emitted from this region. It was
recorded with a high resolution visible spectrometer (KS3),
which had a Czerny–Turner arrangement and directly
observed the low density edge plasma close to the inner
poloidal limiter. The spectral wavelength range of the
spectrometer does not cover the whole spectrum and so four
consecutive discharges were chosen to form a joined image,
see figure 5, with comparable plasma conditions as well as
assumed comparable rovibrational populations.

4. Spectral analysis

The final step in generating an assigned synthetic spectra is
performed using a program called ExoCross (Yurchenko
et al 2018). ExoCross produces cross-sections for the
absorption or emission of photons by molecules. It uses
rotational, vibrational and electronic temperatures to produce
a statistical (Boltzmann) population model. The equation for

Figure 2. Output rovibronic energy levels from MARVEL for the largest spectroscopic networks of BeH, BeD, and BeT, against nuclear
rotational quantum number, N, times nuclear rotational quantum number plus one. The rovibrational states of X S+2 are the lower set and the
A P2 rovibrational states start at 20 000 cm−1. Each of the energy levels represented here actually corresponds to two spin degenerate energy
levels as both the X and the A states are doublets.
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Table 3. Comparison of excitation energies as a function of vibrational quanta, v, computed with Duo and obtained by MARVEL for: BeH
and BeD X S+2 at J=0.5, Ω=0.5, parity=+; BeT X S+2 at J=2.5, Ω=0.5, parity=−.

v X S2

BeH BeD BeT

Duo MARVEL Duo MARVEL Duo MARVEL

0 0 0 0 0 49.2756 50.3
1 1986.3054 1986.4169 1488.4401 1488.8472 1323.9046
2 3896.8004 3896.8707 2935.6045 2936.1953 2568.5846
3 5729.2711 5729.2613 4340.7423 4341.3802 3782.8768
4 7480.4545 7480.4219 5702.8860 4966.2478
5 9145.4221 7020.7372 6118.0189
6 10 716.6777 8292.5346 7237.3131
7 12 182.7098 9515.8791 8322.9914
8 13 525.5493 10 687.4899 9373.5704
9 14 716.2767 11 802.8549 10 387.1133
10 15 705.6510 12 855.7188 11 361.0802
11 16 402.4285 13 837.299 12 292.1239
12 16 664.9980 14 735.0110 13 175.8010
13 15 530.2285 14 006.1479
14 16 194.0499 14 775.0274
15 16 679.3277 15 471.0599
16 16 918.4202 16 077.7733
17 16 956.8145 16 570.2919
18 16 910.3608
19 17 056.2519
20 17 076.5405

Table 4. Comparison of excitation energies as a function of vibrational quanta, v, computed with Duo and obtained by MARVEL for: BeH
and BeD A P+2 at J=1.5, Ω=0.5, parity=+; BeT A Π+ at J=2.5, Ω=0.5, parity=−.

v A 2Π

BeH BeD BeT

Duo MARVEL Duo MARVEL Duo MARVEL

0 20 050.8587 20 092.2658 20 048.3803 20 071.3872 20 089.3230 20 090.7
1 22 056.7376 22 097.0590 21 552.7700 21 575.8314 21 378.1542
2 23 978.5785 24 017.3355 23 011.6534 23 034.2030 22 634.0613
3 25 813.4908 25 850.6970 24 423.8044 24 445.6549 23 856.2579
4 27 558.2734 27 594.5151 25 788.0151 25 043.9940
5 29 208.9935 29 243.2969 27 102.9758 26 196.4966
6 30 760.6586 30 793.4022 28 367.1779 27 312.9196
7 32 206.9278 29 578.8347 28 392.3027
8 33 539.8057 30 735.8129 29 433.5357
9 34 749.2511 31 835.5682 30 435.3273
10 35 822.6125 32 875.0780 31 396.1765
11 36 743.7529 33 850.7620 32 314.3426
12 37 491.6119 34 758.3833 33 187.8099
13 38 037.6829 35 592.9147 34 014.2541
14 38 341.2611 36 348.3556 34 790.9884
15 37 017.4704 35 514.9038
16 37 591.4032 36 182.3870
17 38 059.0891 36 789.2084
18 38 406.3136 37 330.3688
19 38 614.1568 37 799.8866
20 38 190.4670
21 38 493.0018
22 38 695.7499
23 38 779.4876
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the population of a state: Pe,v,J where e=electronic state,
v=vibrational quanta, and J=total angular momentum
quantum number is

= - - -- = = - = = = =
( )

( ) ( )

P e e e 1e v J, ,
Ee v J Ee v J

kT

Ee v J Ee v J
kT

Ee v J
kT

, , , , 0
rot

, , 0 , 0, 0

vib

, 0, 0

ele

in which the temperature dependence is split into three expo-
nentials with exponents relating to the rotational, vibrational
and electronic state temperatures respectively. The first term
is a function of the rotational temperature, Trot, and pure
rotational energy, - =( )E Ee v J e v J, , , , 0 , the second the vibrational
temperature, Tvib, and pure vibrational energy, -=(Ee v J, , 0

= = )Ee v J, 0, 0 , and the third the electronic state temperature, Tele,
and the pure electronic state energy, = =Ee v J, 0, 0.

Einstein A-values, here provided by Duo, along with the
populations are used to generate transition intensities,
   ¢ ¢ ¢Ie v e v, , , , . ExoCross then uses line positions, also from Duo,

and generates Gaussians with a width of the spectrometer’s
instrument function, w≈1.5Å (≈0.6 cm−1), and an area of
the calculated transition intensity,    ¢ ¢ ¢Ie v e v, , , , . These indivi-
dual Gaussians are summed, giving the emitted intensity at a
given energy.

In taking different rotational, vibrational and electronic
temperatures ExoCross allows us to more accurately fit non-
LTE spectra. This procedure is useful in the case where LTE
has not been reached by the molecule producing the spectra.
In such an instance the different spacing between electronic,
vibrational, and rotational energy levels means that they adapt
to changing temperatures and plasma conditions at different
rates. In the cases discussed here the necessary time to reach

equilibrium is too long and the plasma density too low for
LTE conditions.

The ExoCross calculation is repeated for rotational and
vibrational temperatures varying independently from 500 to
10000 K. For each combination of vibrational and rotational
temperatures a program ‘diffspec’ is used to integrate the area
under both curves, the overlap, and the area between the
curves, the difference. The metric minimized to find the best
fit temperature is the difference divided by the overlap. The
theoretical and experimental spectra are both normalized, in
the first instance, to have Q-branch peak values of 1.0. A
multiplicative factor is then required to allow the peak values
to differ. The experimental spectrum also contains a back-
ground which must be removed before matching to the
theoretical spectrum, which necessitates a threshold. Also a
higher weighting should be placed on fitting to the more
intense parts of the experimental spectra which have the
smallest experimental uncertainties in measurement. To this
end, there are three inputs which adjust the intensity to control
the nature of the fitting: factors, background thresholds and
weight. The factors are applied to the synthetic spectrum by
multiplying the intensity by a series of factors, here 0.8–1.2 in
steps of 0.05. This allows the normalized spectra of arbitrary
intensities to have different maximum values with respect to
one another. For each factor thresholds are applied to the
experimental spectra, moving each one up or down by an
amount which varies from 0.0 to 0.1 in steps of 0.01. This
allows the background in the experimental spectrum to be
accounted for even if it differs between spectra recorded in
different discharges. The last control input is a weight,

Figure 3. Fitted PECs for the X S+2 state and the A P2 state with vibrational energies at J=0.5 for BeH, BeD, and BeT.
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allowing a higher weighting to be given to the higher intensity
portions of the spectrum for both the difference and the
overlap. This is achieved by weighting each intensity by a
power, here a weighting of 2.0 is used, the area effectively
being squared. This ensures a sensible relation between the
uncertainty in an intensity measurement and the magnitude of
that intensity. There are also input parameters which are set to
ignore certain, polluted, regions of the spectra from the area
summation.

4.1. BeH analysis

Figures 4 and 6 compare experimental BeH spectra with the
theoretical spectra generated by the computational methods
described in section 2. An invasive H-atom line, Hβ, is marked
in figure 4; this region was excluded from the temperature
fitting procedure in diffspec as described above. The best fit
temperature for this spectra has Trot= (540±70)K and
Tvib=(3300±300)K meaning that the emission is from a

Table 5. Section of the states file produced by Duo for BeH with column format explanation.

1 2 3 4 5 6 7 8 9 10 11
n E m J P+/− Pe/f State v Λ Σ Ω

1 0 16 0.5 + e X2Sigma+ 0 0 0.5 0.5
2 1986.305 446 16 0.5 + e X2Sigma+ 1 0 0.5 0.5
3 3896.800 417 16 0.5 + e X2Sigma+ 2 0 0.5 0.5
4 5729.271 094 16 0.5 + e X2Sigma+ 3 0 0.5 0.5
5 7480.454 45 16 0.5 + e X2Sigma+ 4 0 0.5 0.5
6 9145.422 113 16 0.5 + e X2Sigma+ 5 0 0.5 0.5
7 10 716.677 675 16 0.5 + e X2Sigma+ 6 0 0.5 0.5
8 12 182.709 789 16 0.5 + e X2Sigma+ 7 0 0.5 0.5
9 13 525.549 349 16 0.5 + e X2Sigma+ 8 0 0.5 0.5
10 14 716.276 652 16 0.5 + e X2Sigma+ 9 0 0.5 0.5

Column Notation

1 n Rovibronic counting number
2 E Energy of rovibronic state relative to ground state (cm−1)
3 m multiplicity, including nuclear spin degeneracy
4 J Total angular momentum quantum number
5 P+/− Parity in +/− notation
6 Pe/f Parity in e/f notation
7 State Electronic state
8 v Vibrational quantum number
9 Λ Projection of electronic orbital angular momentum quantum number
10 Σ Projection of electron spin angular momentum quantum number
11 Ω Projection of total electronic angular momentum quantum number

Table 6. Section of the trans file produced by Duo for BeH with column format explanation.

1 2 3 4
n″ n′ A ṽ

71 1 4.58E-10 16 933.174 781
89 1 5.63E-02 38 037.683 830
65 1 8.17E-11 16 699.528 089
58 1 2.58E-07 12 198.141 744
95 1 6.48E-03 38 492.659 618
83 1 1.95E-01 32 206.945 906
51 1 1.12E-09 20.326 390

Column Notation

1 n′ Initial rovibronic state number, see table 5
2 n″ Final rovibronic state number, see table 5
3 A Eisenstein A-coefficient (s−1)
4 ṽ Transition wavenumber (cm−1)
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non-LTE plasma. The fitting metric for this combination of
rotational and vibrational temperatures=0.208. Uncertainties
were obtained from the greatest variation in temperature
within 10% increase of the metric. The extreme difference
between the vibrational and rotational temperatures is a pro-
duct of the method by which the spectrum was produced. The
need for a much higher vibrational temperature is illustrated
by the presence of the 1–1 vibrational band head around
20050 cm−1 in figure 4 which is absent for Tvib=
Trot=540 K. This would be the spectrum of BeH in LTE at
540 K and it clearly shows all of the primary peaks, that is all
the transitions from fundamental vibrational quanta v′=0 to
v″=0. What is missing are all the lower intensity peaks
which are produced by transitions from higher vibrational
states. When the vibrational temperature is brought up to the
best fit temperature of 3300 K the lower intensity, higher
vibrational, components of the spectrum are brought sharply
into alignment with the experimentally observed spectrum.

The degree of matching to the experimental spectra is
highlighted by the close-up view of the R-branch shown in
figure 6. The transition assignment labels here show that the

vibrational quanta v′=0 to v″=0 transitions are more
intense and those of higher vibrational quanta are lower in
intensity. The assignments show in order left to right:
v′=upper state vibrational quantum number, N′=upper
state nuclear rotational quantum number, v″=lower state
vibrational quantum number, N″=lower state nuclear rota-
tional quantum number. The heights of the transition lines in
this figure are proportional to the A-values of the transitions
not to the transition intensities. Hence, these lines do not
necessarily correspond one to one to the height of the peaks in
the synthetic spectrum which are dependent on temperature
based populations, see equation (1), as well as A-values.

4.2. BeD analysis

A match was made between the experimental BeD spectrum
from JET and a theoretical spectrum by varying the vibrational
and rotational temperatures. Figure 5 shows an assigned
synthetic spectrum generated at Trot=(3800±700) K and
Tvib=(4700±800)K using our BeD line list. The fitting
metric for this combination of rotational and vibrational

Figure 4.Measured BeH spectrum, shown in red, was recorded with a high resolution visible spectrometer from a hydrogen doped lamp with
a beryllium target. Assigned synthetic spectrum of BeH, in black, is generated with Trot=540 K and Tvib=3300 K using our BeH line list.

Figure 5.Measured BeD spectra, in red, green, blue and orange lines with pulse numbers and times in the legend, were recorded with a high
resolution spectrometer, Te≈30 eV and ne≈10−18 m−3. Assigned synthetic spectrum, in black, is generated with Trot=3800 K and
Tvib=4700 K using our BeD line list.
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temperatures=0.254. Uncertainties were obtained from the
greatest variation in temperature within 10% increase of the
metric. This combination of experimental BeD spectra has also
been fitted assuming LTE (Trot=Tvib). This gave a result of
Trot=Tvib=(4300±600)K with the fitting metric=0.274.
This temperature fitting was also repeated while excluding the
under-fitted vibrational 0–0 band head for both LTE and non-
LTE assumptions. This gave a result of Trot = Tvib = (4400 ±
600)K for LTE with the fitting metric = 0.252 and Trot=
(4100±700)K and Tvib=(4700±800)K for non-LTE with
the fitting metric=0.236.

Measured BeD spectra were recorded during the limiter
phase of discharges 92 493–92 496. The vibrational and
rotational temperatures fitted to the joined spectrum for BeD
are much closer than in the BeH spectrum above, meaning the
plasma conditions were much closer to LTE. There are four
features, around ≈20 000 cm−1 in the JET spectra which are
not reproduced in the synthetic spectrum. These are invasive

features from other species, two being impurity lines of
remaining nitrogen in the plasma.

Figure 7 shows a close-up section of the Q-branch with
black drop lines at every transition energy in the region. This
figure demonstrates the high degree of accuracy present
across the range of these calculations.

The paper by Duxbury et al (1998) shows fittings for
several molecular features in JET spectra including a BeD
spectrum of the A to X transition. They fit a synthetic spec-
trum to an observed spectrum, which is generated using
molecular constants. These constants are only valid for each
isotopologue individually. By visual comparison, our work
shows an improvement in line positions and in intensities.

4.3. BeT predictions

Figure 8 shows a predicted synthetic spectrum of the A–X
transition of BeT. The rotational and vibrational temperatures
used to generate this spectrum are those found for BeD in the

Figure 7. Magnified Q-Branch synthetic BeD A–X spectra as in figure 5, generated at Trot=3800 K and Tvib=4700 K. Transition
assignments with drop lines in black and high resolution JET measured spectra in green and blue. Assignments show in order left to right:
v″ = upper state vibrational quantum number, N″ = upper state nuclear rotational quantum number, v′ = lower state vibrational quantum
number, N′ = lower state nuclear rotational quantum number.

Figure 6. Magnified R-branch synthetic BeH A–X spectrum as in figure 4, generated at Trot=540 K and Tvib=3300 K. Measured BeH
spectrum is shown in red and transition assignments with drop lines in black. Assignments show in order left to right: v″ = upper state
vibrational quantum number, N″ = upper state nuclear rotational quantum number, v′ = lower state vibrational quantum number, N′ = lower
state nuclear rotational quantum number.

10

J. Phys. B: At. Mol. Opt. Phys. 51 (2018) 185701 D Darby-Lewis et al



JET discharges discussed before. This is the BeT rovibronic
spectrum expected to be observed in JET during a pure tri-
tium campaign in discharges similar to those in which the
BeD spectra were observed. The degree of accuracy in the
results for BeT, and any isotopologue of BeH, is expected to
be as seen in figure 6 for BeD. This will be compared with
future JET and ITER spectra with their D/T fuel mix.

5. Conclusions

We construct line lists for the species BeH, BeD and BeT by
using a mixture of fits to empirical energy levels to obtain
PECs, coupling terms and beyond Born–Oppenheimer cor-
rections. We conclude from a comparison of a synthetic
spectrum fitted to experimental BeH and BeD spectra that our
line lists reproduce the spectra of BeH, BeD and BeT to good
accuracy. This accuracy is shown in figures 6 and 7 and is
assured for BeT by the isotopologue consistency of our
model. The comparisons show discrepancies in the intensities,
for example, in the case of the BeD spectrum mostly seen in
the Q-branch v=0–0 band head. In the synthetic spectrum,
the rotational temperature is too high to match this band head,
which increases in relative intensity with decreasing rotational
temperature. There are two possible explanations for this
issue: firstly the theoretical model uses a statistical population
model, which assumes a thermal equilibrium; the second
possibility is that the line of sight for the experimental
spectrum passes through different temperature regions, all
radiating and giving a cumulative result. The first of these
issues will be addressed in a future publication (Darby-Lewis
and Tennyson 2018) by introducing a full collisional-radiative
population model utilizing vibrationally averaged R-matrix
results from the calculations of Darby-Lewis et al (2017)
extended over bond lengths. The issue with the line of sight
can be solved with a line of sight integration calculation
applied to the results of the full population model. A possible
third explanation is self absorption but given the very thin
(less than 1 cm) layer of plasma containing BeD in the limiter
region observed this is not thought to be able to significantly
contribute to the effect seen on the 0–0 vibrational band head,

this assumption will be tested in future work when we include
a full collisional-radiative population model.

Finally, in a comparison with the previous work on BeD
spectra modeling at JET by Duxbury et al (1998), we con-
clude that a more accurate and more comprehensive model
has been achieved for two reasons. Firstly, the accuracy of the
transition frequency fitting is much increased in our work.
Secondly, our model is built using a single dataset derived
from all the experimental transition data to model the three
isotopologues. Not only does this improve the accuracy of the
model, but it also enables accurate predictions to be made for
the sparsely observed BeT isotopologue.
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