3,351 research outputs found
Anharmonicity of flux lattices and thermal fluctuations in layered superconductors
We study elasticity of a perpendicular flux lattice in a layered
superconductor with Josephson coupling between layers. We find that the energy
contains ln(flux displacement) terms, so that elastic constants cannot be
strictly defined. Instead we define effective elastic constants by a thermal
average. The tilt modulus has terms with ln(T) which for weak fields, i.e.
Josephson length smaller than the flux line spacing, lead to displacement
square average proportional to T/ln(T). The expansion parameter indicates that
the dominant low temperature phase transition is either layer decoupling at
high fields or melting at low fields.Comment: 15 pages, 2 eps figures, Revtex, submitted to Phys. Rev. B.
Sunj-class: superconductivit
Validation of nonlinear PCA
Linear principal component analysis (PCA) can be extended to a nonlinear PCA
by using artificial neural networks. But the benefit of curved components
requires a careful control of the model complexity. Moreover, standard
techniques for model selection, including cross-validation and more generally
the use of an independent test set, fail when applied to nonlinear PCA because
of its inherent unsupervised characteristics. This paper presents a new
approach for validating the complexity of nonlinear PCA models by using the
error in missing data estimation as a criterion for model selection. It is
motivated by the idea that only the model of optimal complexity is able to
predict missing values with the highest accuracy. While standard test set
validation usually favours over-fitted nonlinear PCA models, the proposed model
validation approach correctly selects the optimal model complexity.Comment: 12 pages, 5 figure
Mathematical analysis of a model of river channel formation.
The study of overland flow of water over an erodible sediment leads to a coupled model describing the evolution of the topographic elevation and the depth of the overland water film. The spatially uniform solution of this model is unstable, and this instability corresponds to the formation of rills, which in reality then grow and coalesce to form large-scale river channels. In this paper we consider the deduction and mathematical analysis of a deterministic model describing river channel formation and the evolution of its depth. The model involves a degenerate nonlinear parabolic equation (satisfied on the interior of the support of the solution) with a super-linear source term and a prescribed constant mass. We propose here a global formulation of the problem (formulated in the whole space, beyond the support of the solution) which allows us to show the existence of a solution and leads to a suitable numerical scheme for its approximation. A particular novelty of the model is that the evolving channel self-determines its own width, without the need to pose any extra conditions at the channel margin
Privatization and State Capacity in Postcommunist Society
Economists have used cross-national regression analysis to argue that postcommunist economic failure is the result of inadequate adherence liberal economic policies. Sociologists have relied on case study data to show that postcommunist economic failure is the outcome of too close adherence to liberal policy recommendations, which has led to an erosion of state effectiveness, and thus produced poor economic performance. The present paper advances a version of this statist theory based on a quantitative analysis of mass privatization programs in the postcommunist world. We argue that rapid large-scale privatization creates severe supply and demand shocks for enterprises, thereby inducing firm failure. The resulting erosion of tax revenues leads to a fiscal crisis for the state, and severely weakens its capacity and bureaucratic character. This, in turn, reacts back on the enterprise sector, as the state can no longer support the institutions necessary for the effective functioning of a modern economy, thus resulting in deindustrialization. Using cross-national regression techniques we find that the implementation of mass privatization programs negatively impacts measures of economic growth, state capacity and the security of property rights.http://deepblue.lib.umich.edu/bitstream/2027.42/40192/3/wp806.pd
Precision Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetries A2
We have measured the spin structure functions g2p and g2d and the virtual
photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 0.7
< Q^2 < 20 GeV^2 by scattering 29.1 and 32.3 GeV longitudinally polarized
electrons from transversely polarized NH3 and 6LiD targets. Our measured g2
approximately follows the twist-2 Wandzura-Wilczek calculation. The twist-3
reduced matrix elements d2p and d2n are less than two standard deviations from
zero. The data are inconsistent with the Burkhardt-Cottingham sum rule if there
is no pathological behavior as x->0. The Efremov-Leader-Teryaev integral is
consistent with zero within our measured kinematic range. The absolute value of
A2 is significantly smaller than the sqrt[R(1+A1)/2] limit.Comment: 12 pages, 4 figures, 2 table
Photoproduction of phi(1020) mesons on the proton at large momentum transfer
The cross section for meson photoproduction on the proton has been
measured for the first time up to a four-momentum transfer -t = 4 GeV^2, using
the CLAS detector at the Thomas Jefferson National Accelerator Facility. At low
four-momentum transfer, the differential cross section is well described by
Pomeron exchange. At large four-momentum transfer, above -t = 1.8 GeV^2, the
data support a model where the Pomeron is resolved into its simplest component,
two gluons, which may couple to any quark in the proton and in the .Comment: 5 pages; 7 figure
First measurement of coherent -meson photoproduction on deuteron at low energies
The cross section and decay angular distributions for the coherent \phi meson
photoproduction on the deuteron have been measured for the first time up to a
squared four-momentum transfer t =(p_{\gamma}-p_{\phi})^2 =-2 GeV^2/c^2, using
the CLAS detector at the Thomas Jefferson National Accelerator Facility. The
cross sections are compared with predictions from a re-scattering model. In a
framework of vector meson dominance, the data are consistent with the total
\phi-N cross section \sigma_{\phi N} at about 10 mb. If vector meson dominance
is violated, a larger \sigma_{\phi N} is possible by introducing larger t-slope
for the \phi N \to \phi N process than that for the \gamma N \to \phi N
process. The decay angular distributions of the \phi are consistent with
helicity conservation.Comment: 6 page
Search for pentaquark in high statistics measurement of at CLAS
The exclusive reaction was studied in the
photon energy range between 1.6-3.8 GeV searching for evidence of the exotic
baryon . The decay to requires the assignment of
strangeness to any observed resonance. Data were collected with the CLAS
detector at the Thomas Jefferson National Accelerator Facility corresponding to
an integrated luminosity of 70 . No evidence for the
pentaquark was found. Upper limits were set on the production cross section as
function of center-of-mass angle and mass. The 95% CL upper limit on the
total cross section for a narrow resonance at 1540 MeV was found to be 0.8 nb.Comment: Submitted to Physical Review Letter
Light Vector Mesons in the Nuclear Medium
The light vector mesons (, , and ) were produced in
deuterium, carbon, titanium, and iron targets in a search for possible
in-medium modifications to the properties of the meson at normal nuclear
densities and zero temperature. The vector mesons were detected with the CEBAF
Large Acceptance Spectrometer (CLAS) via their decays to . The rare
leptonic decay was chosen to reduce final-state interactions. A combinatorial
background was subtracted from the invariant mass spectra using a
well-established event-mixing technique. The meson mass spectrum was
extracted after the and signals were removed in a nearly
model-independent way. Comparisons were made between the mass spectra
from the heavy targets () with the mass spectrum extracted from the
deuterium target. With respect to the -meson mass, we obtain a small
shift compatible with zero. Also, we measure widths consistent with standard
nuclear many-body effects such as collisional broadening and Fermi motion.Comment: 15 pages, 18 figures, 3 table
Herschel-ATLAS: Multi-wavelength SEDs and physical properties of 250 micron-selected galaxies at z < 0.5
We present a pan-chromatic analysis of an unprecedented sample of 1402 250
micron-selected galaxies at z < 0.5 (mean z = 0.24) from the Herschel-ATLAS
survey. We complement our Herschel 100-500 micron data with UV-K-band
photometry from the Galaxy And Mass Assembly (GAMA) survey and apply the
MAGPHYS energy-balance technique to produce pan-chromatic SEDs for a
representative sample of 250 micron selected galaxies spanning the most recent
5 Gyr of cosmic history. We derive estimates of physical parameters, including
star formation rates, stellar masses, dust masses and infrared luminosities.
The typical H-ATLAS galaxy at z < 0.5 has a far-infrared luminosity in the
range 10^10 - 10^12 Lsolar (SFR: 1-50 Msolar/yr) thus is broadly representative
of normal star forming galaxies over this redshift range. We show that 250
micron-selected galaxies contain a larger mass of dust at a given infra-red
luminosity or star formation rate than previous samples selected at 60 micron
from IRAS. We derive typical SEDs for H-ATLAS galaxies, and show that the
emergent SED shape is most sensitive to specific star formation rate. The
optical-UV SEDs also become more reddened due to dust at higher redshifts. Our
template SEDs are significantly cooler than existing infra-red templates. They
may therefore be most appropriate for inferring total IR luminosities from
moderate redshift submillimetre selected samples and for inclusion in models of
the lower redshift submillimetre galaxy populations.Comment: 26 pages, 24 figures, Accepted by MNRA
- …