378 research outputs found

    Spin waves in periodic media and magnetic textures

    Get PDF
    This thesis contains 3 Chapters of original research in the field of micro-magnetism, preceded by an introductory chapter outlining the background theory and literature. The research chapters, in order of appearance: A simulation and theoretical investigation of Bloch oscillations of spin waves in periodic magnetic media. An experimental investigation into a magnetic texture known as a BiSkyrmion using X-ray holography. A micro magnetic simulation based investigation of the collective magnetic dynamics of a lattice of magnetic bubble domains that are stabilised in a ferromagnetic film that is patterned with a hexagonal lattice of holes, known as antidots.Engineering and Physical Sciences Research Council (EPSRC

    Real Property--Air Easement--Proper Party Defendant

    Get PDF

    The effect of uncertainty in whole building simulation models for purposes of generating control strategies

    Get PDF
    Buildings consume a significant amount of energy worldwide in maintaining comfort for occupants. Building energy management systems (BEMS) are employed to ensure that the energy consumed is used efficiently. However these systems often do not adequately perform in minimising energy use. This is due to a number of reasons, including poor configuration or a lack of information such as being able to anticipate changes in weather conditions. We are now at the stage that building behaviour can be simulated, whereby simulation tools can be used to predict building conditions, and therefore enable buildings to use energy more efficiently, when integrated with BEMS. What is required though, is an accurate model of the building which can effectively represent the building processes, for building simulation. Building information modelling (BIM) is a relatively new method of representing building models, however there still remains the issue of data translation between a BIM and simulation model, which requires calibration with a measured set of data. If there a lack of information or a poor translation, a level of uncertaintly is introduced which can affect the simulation’s ability to accurate predict control strategies for BEMS. This paper explores effects of uncertainty, by making assumptions on a building model due to a lack of information. It will be shown that building model calibration as a method of addressing uncertainty is no substitute for a well defined model

    Serotonergic chemosensory neurons modify the C. elegans immune response by regulating G-protein signaling in epithelial cells.

    Get PDF
    The nervous and immune systems influence each other, allowing animals to rapidly protect themselves from changes in their internal and external environment. However, the complex nature of these systems in mammals makes it difficult to determine how neuronal signaling influences the immune response. Here we show that serotonin, synthesized in Caenorhabditis elegans chemosensory neurons, modulates the immune response. Serotonin released from these cells acts, directly or indirectly, to regulate G-protein signaling in epithelial cells. Signaling in these cells is required for the immune response to infection by the natural pathogen Microbacterium nematophilum. Here we show that serotonin signaling suppresses the innate immune response and limits the rate of pathogen clearance. We show that C. elegans uses classical neurotransmitters to alter the immune response. Serotonin released from sensory neurons may function to modify the immune system in response to changes in the animal's external environment such as the availability, or quality, of food

    FACS purification and transcriptome analysis of drosophila neural stem cells reveals a role for Klumpfuss in self-renewal

    Get PDF
    Drosophila neuroblasts (NBs) have emerged as a model for stem cell biology that is ideal for genetic analysis but is limited by the lack of cell-type-specific gene expression data. Here, we describe a method for isolating large numbers of pure NBs and differentiating neurons that retain both cell-cycle and lineage characteristics. We determine transcriptional profiles by mRNA sequencing and identify 28 predicted NB-specific transcription factors that can be arranged in a network containing hubs for Notch signaling, growth control, and chromatin regulation. Overexpression and RNA interference for these factors identify Klumpfuss as a regulator of self-renewal. We show that loss of Klumpfuss function causes premature differentiation and that overexpression results in the formation of transplantable brain tumors. Our data represent a valuable resource for investigating Drosophila developmental neurobiology, and the described method can be applied to other invertebrate stem cell lineages as well

    Integrating multibeam backscatter angular response, mosaic and bathymetry data for benthic habitat mapping

    Get PDF
    Multibeam echosounders (MBES) are increasingly becoming the tool of choice for marine habitat mapping applications. In turn, the rapid expansion of habitat mapping studies has resulted in a need for automated classification techniques to efficiently map benthic habitats, assess confidence in model outputs, and evaluate the importance of variables driving the patterns observed. The benthic habitat characterisation process often involves the analysis of MBES bathymetry, backscatter mosaic or angular response with observation data providing ground truth. However, studies that make use of the full range of MBES outputs within a single classification process are limited. We present an approach that integrates backscatter angular response with MBES bathymetry, backscatter mosaic and their derivatives in a classification process using a Random Forests (RF) machine-learning algorithm to predict the distribution of benthic biological habitats. This approach includes a method of deriving statistical features from backscatter angular response curves created from MBES data collated within homogeneous regions of a backscatter mosaic. Using the RF algorithm we assess the relative importance of each variable in order to optimise the classification process and simplify models applied. The results showed that the inclusion of the angular response features in the classification process improved the accuracy of the final habitat maps from 88.5% to 93.6%. The RF algorithm identified bathymetry and the angular response mean as the two most important predictors. However, the highest classification rates were only obtained after incorporating additional features derived from bathymetry and the backscatter mosaic. The angular response features were found to be more important to the classification process compared to the backscatter mosaic features. This analysis indicates that integrating angular response information with bathymetry and the backscatter mosaic, along with their derivatives, constitutes an important improvement for studying the distribution of benthic habitats, which is necessary for effective marine spatial planning and resource managemen

    Analyses and limited evaluation of payload and legged landing system structures for the survivable soft landing of instrument payloads

    Get PDF
    Two computer programs for investigation of wide variety of legged planetary landing gear configuration

    Rabies in Endangered Ethiopian Wolves

    Get PDF
    With rabies emerging as a particular threat to wild canids, we report on a rabies outbreak in a subpopulation of endangered Ethiopian wolves in the Bale Mountains, Ethiopia, in 2003 and 2004. Parenteral vaccination of wolves was used to manage the outbreak

    A cross-sectional study of factors associated with dog ownership in Tanzania

    Get PDF
    Background: Mass vaccination of owned domestic dogs is crucial for the control of rabies in sub-Saharan Africa. Knowledge of the proportion of households which own dogs, and of the factors associated with dog ownership, is important for the planning and implementation of rabies awareness and dog vaccination programmes, and for the promotion of responsible dog ownership. This paper reports the results of a cross-sectional study of dog ownership by households in urban and rural communities in the United Republic of Tanzania. Results: Fourteen percent (202) of 1,471 households surveyed were identified as dog-owning, with an average of 2.4 dogs per dog-owning household. The percentage of dog-owning households was highest in inland rural areas (24%) and lowest in coastal urban communities (7%). The overall human: dog ratio was 14: 1. Multivariable logistic regression revealed that households which owned cattle, sheep or goats were much more likely to own dogs than households with no livestock. Muslim households were less likely to own dogs than Christian households, although this effect of religion was not seen among livestock-owning households. Households were more likely to own a dog if the head of the household was male; if they owned a cat; or if they owned poultry. Dog ownership was also broadly associated with larger, wealthier households. Conclusion: The human: dog ratios in Tanzania are similar to those reported elsewhere in sub-Saharan Africa, although cultural and geographic variation is evident. Estimation of the number of owned dogs, and identification of household predictors of dog ownership, will enable targeted planning of rabies control effort

    Comprehensive molecular testing for respiratory pathogens in community-acquired pneumonia

    Get PDF
    Funding: This work was supported by the Chief Scientist Office (grant number ETM/250).Background. The frequent lack of a microbiological diagnosis in community-acquired pneumonia (CAP) impairs pathogen-directed antimicrobial therapy. This study assessed the use of comprehensive multibacterial, multiviral molecular testing, including quantification, in adults hospitalized with CAP. Methods. Clinical and laboratory data were collected for 323 adults with radiologically-confirmed CAP admitted to 2 UK tertiary care hospitals. Sputum (96%) or endotracheal aspirate (4%) specimens were cultured as per routine practice and also tested with fast multiplex real-time polymerase-chain reaction (PCR) assays for 26 respiratory bacteria and viruses. Bacterial loads were also calculated for 8 bacterial pathogens. Appropriate pathogen-directed therapy was retrospectively assessed using national guidelines adapted for local antimicrobial susceptibility patterns. Results. Comprehensive molecular testing of single lower respiratory tract (LRT) specimens achieved pathogen detection in 87% of CAP patients compared with 39% with culture-based methods. Haemophilus influenzae and Streptococcus pneumoniae were the main agents detected, along with a wide variety of typical and atypical pathogens. Viruses were present in 30% of cases; 82% of these were codetections with bacteria. Most (85%) patients had received antimicrobials in the 72 hours before admission. Of these, 78% had a bacterial pathogen detected by PCR but only 32% were culture-positive (P < .0001). Molecular testing had the potential to enable de-escalation in number and/or spectrum of antimicrobials in 77% of patients. Conclusions. Comprehensive molecular testing significantly improves pathogen detection in CAP, particularly in antimicrobial-exposed patients, and requires only a single LRT specimen. It also has the potential to enable early de-escalation from broad-spectrum empirical antimicrobials to pathogen-directed therapy.Publisher PDFPeer reviewe
    corecore