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Abstract

Multibeam echosounders (MBES) are increasingly becoming the tool of choice for marine habitat mapping applications. In
turn, the rapid expansion of habitat mapping studies has resulted in a need for automated classification techniques to
efficiently map benthic habitats, assess confidence in model outputs, and evaluate the importance of variables driving the
patterns observed. The benthic habitat characterisation process often involves the analysis of MBES bathymetry, backscatter
mosaic or angular response with observation data providing ground truth. However, studies that make use of the full range
of MBES outputs within a single classification process are limited. We present an approach that integrates backscatter
angular response with MBES bathymetry, backscatter mosaic and their derivatives in a classification process using a Random
Forests (RF) machine-learning algorithm to predict the distribution of benthic biological habitats. This approach includes a
method of deriving statistical features from backscatter angular response curves created from MBES data collated within
homogeneous regions of a backscatter mosaic. Using the RF algorithm we assess the relative importance of each variable in
order to optimise the classification process and simplify models applied. The results showed that the inclusion of the
angular response features in the classification process improved the accuracy of the final habitat maps from 88.5% to 93.6%.
The RF algorithm identified bathymetry and the angular response mean as the two most important predictors. However, the
highest classification rates were only obtained after incorporating additional features derived from bathymetry and the
backscatter mosaic. The angular response features were found to be more important to the classification process compared
to the backscatter mosaic features. This analysis indicates that integrating angular response information with bathymetry
and the backscatter mosaic, along with their derivatives, constitutes an important improvement for studying the
distribution of benthic habitats, which is necessary for effective marine spatial planning and resource management.
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Introduction

Marine biodiversity worldwide is under pressure from a wide

variety of anthropogenic activities [1,2]. The mapping of marine

habitats is viewed as the first step in the process of studying,

managing, protecting and ultimately conserving marine biodiver-

sity [3]. Multibeam echo sounders (MBES) are now extensively

used for this purpose, chiefly because they present technological

capabilities (swath coverage, acquisition of high-resolution ba-

thymetry, wide depth range) that all other existing systems, such as

single-beam echo sounders, side-scan sonars or Light Detection

And Ranging (LiDAR), fail to combine [4]. Various methods of

classifying MBES data into habitat maps have been developed

over the past two decades. These methods vary widely in terms of

the classification algorithms that are implemented, but also in the

data features used for classification. There are three types of

MBES datasets commonly used as features and/or sources of

derivative features for the classification process: backscatter

mosaic, backscatter angular response and bathymetry.

A MBES backscatter mosaic is a georeferenced grey-level image

representing the acoustic intensity scattered by the seabed, with

different seabed types usually showing different intensity levels [5].

Since the acoustic intensity scattered by the seabed is varying with

the angle of incidence of the acoustic signal at the seafloor at the

time of data acquisition, a statistical normalization of this angular

variation is required prior to forming the backscatter mosaic, so

that the intensity variations in the image are due to geographical

changes in seafloor-type only [6]. This normalization process

implies that the quantitative aspect of the intensity level is lost, so

that any analysis of the resulting backscatter mosaic requires some

form of qualitative interpretation or ground-truthing [7]. The

backscatter mosaic grey-level has been extensively used as a

feature in many classification techniques [8–11] or as a source of

derivative features describing, among other image characteristics,

the grey-level statistics [12,13] or the texture [14].

The MBES backscatter angular response is the acoustic

intensity scattered by the seabed as a function of the angle of

incidence of the acoustic signal at the seafloor. Often represented
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as the mean angular curve, the backscatter angular response is

characteristic of the type of seafloor that reflected the acoustic

signal [7]. Since the angular response is not normalized like the

backscatter mosaic, it potentially allows the extraction of

quantitative seafloor characteristics [7]. Forming a useful mean

angular response curve requires the collection of several data

samples from the widest angular range possible. In practice, this is

obtained by combining several consecutive pings over a full or half

swath, which leads to a spatial resolution that is considerably

coarser compared to that achieved in the backscatter mosaic

format. Furthermore, the large area of seabed thus covered might

not present a homogenous seabed type, and thus lead to errors in

the angular response analysis. As a consequence, approaches based

on exploiting features describing the backscatter angular response

curves have remained relatively scarce to date in comparison to

those exploiting the backscatter mosaic format [4]. However there

has been a renewed interest in this type of analysis recently, with a

number of studies testing a number of different features for their

predictive power [15–19].

Bathymetry is the data type MBES were originally designed to

record. Bathymetry is a major driver of species distributions in

coastal waters as depth influences the amount of light reaching the

seafloor and exposure to wave action and tide induced currents. In

addition, full-coverage bathymetry allows the extraction of

seascape metrics that may be used to estimate variations in

environmental complexity, which might influence the area

available for settlement, food and protection from predation

[20]. The predictive power of MBES bathymetry data and their

derivative metrics in revealing habitat spatial distribution patterns

and the relationship between seabed type and benthic habitats has

often been demonstrated [21–24].

The past decade has seen an increase in classification techniques

developed to exploit features commonly derived from two of these

three MBES data sources. Methodologies that integrate both

bathymetry derivatives and backscatter mosaic features have

become commonplace and have shown improvements in class

separation and overall classification success [10,25–29]. In

parallel, Fonseca et al. [30] suggested that backscatter mosaic

and angular response should be combined to use both the fine

spatial resolution of the former and the predictive power of the

latter. Although promising, this suggestion has rarely been

implemented [31,32]. Finally, there has been attempts at

integrating features extracted from bathymetry and angular

response curves although they have remained scarce to date

[33]. However, to our knowledge, no benthic habitat classification

methodology has been designed to integrate features derived from

all three MBES data sources. Given the improvements in

classification accuracy obtained by the more recent methodologies

combining two datasets over the more traditional methodologies

that only exploit one, it can be expected that the integration of

features extracted from the three data sources could further

improve the class-differentiation process.

Irrespective of whether existing habitat-mapping classification

techniques focus on backscatter mosaic, backscatter angular

response or bathymetry data (or their integration), those that

exploit a set of several data features often fail to assess which of

these features contribute the most to classification success. With an

increasing number of classification approaches being available that

use an increasing number of features derived from MBES data,

future classification efforts should be accompanied with the

identification of which features are the most relevant to

classification success. This issue is becoming particularly pressing

with the increasing volume of data and the growing demand for

mapping products [4]. Random Forests (RF) may address this

specific requirement, as they provide a measure of relative

importance for each feature as a complement to their classification

output. Typically, an RF algorithm works by training several

decision trees, and combining their results through a voting

process with the number of trees set by the user, and each tree

voting for a particular class [34]. Contrary to standard decision

tree algorithms that split nodes based on the best split amongst all

variables, RF algorithms split nodes by using the best among a

subset of predictors that are randomly chosen at each node [35].

The capability of an algorithm to estimate the relative importance

of each feature stems from this random subset selection process.

RF algorithms have repeatedly proven successful in predicting fish

assemblages [36], in mapping near shore epi-macrobenthic species

richness from airborne LiDAR data [37] and in mapping benthic

habitats from Autonomous Underwater Vehicle (AUV) images

[38].

Accordingly, the objectives of the present study are to integrate

angular response features with standard products derived from

both bathymetry and backscatter mosaic and assess whether this

integration lead to increased classification accuracy, using the

capability of the RF algorithm to estimate the relative importance

of each feature.

Methods

Ethics statement
The remotely sensed techniques used in this study (both sonar

and video observations) did not require a permit for their use in

survey, thus no specific permission were sought for data collection

in the study area location (GPS coordinates can be found on

Figure 1). The field studies did not involve endangered or

protected species.

Study area
The study site encompassed a 42 km2 area, with sea depths

ranging from 11 to 80 m, located off Cape Duquesne in Discovery

Bay, in the state of Victoria, south-eastern Australia (Figure 1).

Shallow reefs in this area support diverse assemblages of red algae

and kelps (dominated by Ecklonia radiata, Phyllospora comosa and

Durvillaea potatorum), while deeper reefs are dominated by

invertebrate communities with sponges, ascidians, bryozoans and

gorgonian corals [39].

Acoustic data acquisition
The acoustic data were acquired on the 6th and 7th of

November 2005 using a hull-mounted Reson SeaBat 8101 MBES,

integrated with a Fugro ‘‘Starfix.HP’’ Differential GPS system for

positioning (60.30 m accuracy) and an Applanix POS MV

(Position and Orientation Systems for Marine Vessels) for heave,

pitch, roll and yaw corrections (60.02u accuracy). Real-time

navigation, data-logging, quality control and display were

provided by the Fugro Starfix suite 8.1 software. Daily sound

velocity profiles were collected to correct the acoustic data for

water-column sound speed variations.

Bathymetry map and derivatives
Depth soundings were cleaned using the Fugro Starfix suite,

reduced to the lowest astronomical tide datum using tidal

observations, and gridded to produce a bathymetric grid at

2.5 m resolution (Figure 1). Six derivative layers were produced

from the high-resolution bathymetry grid using various GIS

software (Table 1); aspect, rugosity, maximum curvature, bathy-

metric position index (BPI), slope and complexity [20,24,40].

These six layers were selected based on their successful application
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in thematic benthic habitat map construction of previous studies

[25–27].

Backscatter mosaic and derivatives
The backscatter mosaic was obtained using the CMST MB

Process software v10.04.04.2, developed by Curtin University’s

Centre for Marine Science and Technology [41,42]. First, vessel

attitude data (i.e. roll, pitch, yaw, heave and heading) and

sounding slant range were used to estimate the actual depth and

location of measurements within each beam in every ping. Then,

raw signal amplitude data were reduced to seafloor backscatter

intensity using radiometric corrections, including TVG (Time-

Varying Gain) removal, the estimation of spreading and absorp-

tion losses and the compensation for the beam footprint size. The

angular dependence was then statistically compensated using a

‘sliding window’ of 25 consecutive pings and a reference angle of

30u. Finally, a backscatter mosaic was produced at 2.5 m

resolution and exported for further analysis (Figure 1).

Six derivatives were produced from the backscatter mosaic

using the ENVI 4.7 software (Table 1): specifically, Red, Green

and Blue layers of Hue, Saturation and Intensity (HSI) [43], and

the Haralick texture features Homogeneity, Entropy and Corre-

lation, calculated from Grey Level Co-occurrence Matrices

(GLCM) [44]. Like the bathymetry derivatives, the three HSI

layers were selected based on their ability to produce accurate

benthic habitat maps in previous studies [25–27]. Homogeneity,

Entropy and Correlation were selected, among a wide range of

other texture features available [44], based on their reported

importance in previous texture-based habitat mapping efforts

[14,28,45,46] and on their belonging to three different groups, so

as to minimise risks of correlation [47]. The three texture features

were obtained by calculating the GLCMs in the 0u, 45u, 90u and

135u directions over the 8-bit backscatter mosaic (with no

greyscale normalisation applied), extracting the features from

each GLCM direction, and averaging the results.

Angular response derivatives
The angular response curves were obtained by combining the

seafloor backscatter intensity samples produced by the MB Process

software (prior to the statistical angular compensation that leads to

the mosaic) and a segmentation of the mosaic. First, the mosaic

was segmented into separate contiguous regions using a region-

growing algorithm in Spring v5.1 software. By initially using each

mosaic pixel as a distinct region (‘‘seeds’’), the algorithm

recursively aggregated the neighbouring regions presenting the

maximum grey-level similarity, as long as this maximum similarity

fell under a user-defined similarity threshold that became

increasingly less stringent as the algorithm progressed [48]. At

Figure 1. Study site location (top panels), bathymetry grid with superimposed ground truth observation transects (bottom left
panel) and backscatter mosaic (bottom right panel).
doi:10.1371/journal.pone.0097339.g001

Benthic Habitat Mapping Using Multibeam Sonar

PLOS ONE | www.plosone.org 3 May 2014 | Volume 9 | Issue 5 | e97339



the end of this recursive process, a second user-defined area

threshold that specified a minimum region-size, allowed the

smallest regions to be aggregated with larger adjacent regions. For

this study, a similarity threshold of 1 and an area threshold of 2500

were used as parameters to produce the segmentation. The

segmentation was then imported into ArcMap, in which all

segments were vectorised as polygons (Figure 2a). Finally, using

proprietary Matlab code (available in Supplementary S1), the

seafloor backscatter intensity samples and their associated angle of

incidence were compiled for all MBES data files over each

polygon, and the mean intensity value (in dB space) for each angle

was computed. This process resulted in a single backscatter

angular response curve for each segment (Figure 2b and c).

Four derivatives were produced from the backscatter angular

response curves using Matlab: mean, least square slope, skewness

and kurtosis of the backscatter intensity within 30 to 50u incidence

angles. The derivative values were then attributed to their

respective polygons, and rasterised at a resolution of 2.5 m using

ArcMap (Figure 3).

Data layer correlation analysis
The 18 data layers that were obtained from the acoustic data

(bathymetry + six bathymetry derivatives + mosaic grey-level + six

mosaic derivatives + four angular response derivatives) were tested

for correlation in ENVI 4.7, through the computation of Pearson’s

linear correlation coefficient (R2).

Towed video observations
A VideoRay PRO 3 GTO Remotely Operated Vehicle (ROV)

was used to provide ground truth information for model building

and evaluation (Figure 1). Underwater acoustic positioning of the

towed video system was achieved by using a Tracklink 1500MA

Ultra Short Base Line (USBL) acoustic tracking system, with vessel

errors (roll, pitch and yaw) being corrected for by using a KVH

Industries motion sensor. An Omnistar wide-area Differential

Global Positioning System (DGPS) was used to fix the vessel

location, and apply corrections for acoustically positioned video

(62.5 m accuracy). The recorded video data were classified

according to the Victorian Towed Video Classification scheme to

identify benthic biota classes. The classification scheme followed

the guidelines published by the Interim Marine and Coastal

Regionalisation for Australia [49]. Seven habitat classes were

identified from the video observations; Mixed Brown algae (MB),

Invertebrates (INV), Mixed Red algae and Invertebrates (MRI),

Mixed Brown algae and Invertebrates (MBI), Mixed Brown algae

and Mixed Red algae (MBMR), Mixed Green algae and

Invertebrates (MGI) and No Visible Biota (NVB). All available

reference data were randomly sampled for model development

(70%) and for the accuracy assessment (30%) (Table 2).

Random Forests
Supervised RF decision trees were implemented to train and

subsequently model class predictions. A RF algorithm pro-

grammed in Matlab was used [50], combined with a proprietary

Matlab routine (available in Supplementary S1) developed to read

and process multilayer images in native ENVI format. For this

study, the RF algorithm parameters m (number of predictors

randomly chosen for each split) and ntree (number of trees

generated) were set to the integral part of the square root of the

total number of variables (default setting) and 200 (to minimise

errors rates) respectively.

Initially, two RF models were generated to test for the relevance

of the angular response derivatives (Table 3). The first model was

limited to bathymetry and the backscatter mosaic and their

derivatives (Model 1), while the second model also incorporated

the angular response derivatives (Model 2). The contribution of

each input layer to each of these two models was ranked by

importance (scaled from 0 to 1). Additional RF models were then

generated to test whether the success rate of these initial models

could be achieved by using fewer input layers. First, an RF model

was generated using only the input layers with an importance

score of 1 (Model 3). Then, additional RF models were generated,

in which the input layers of lesser importance were gradually

added, based on two rules: (1) three or less variables should be

added at a time, and (2) the differences in the importance score

between the added variables should be less than 0.2 (Models 4 to

6). The accuracy of each model was assessed by forming an error

matrix, and computing its overall accuracy and Kappa coefficient

Table 1. Detailed explanations of all layers derived from bathymetry and the backscatter mosaic.

Derivatives (original layer) Details
Analysis window
(pixel size: 2.5 m) Software

Aspect (Bathymetry) Describes the azimuthal direction of the steepest slope
through the points in the analysis window [20]

363 Spatial Analyst (ArcGIS 9.3)

Rugosity (Bathymetry) A measure of structural complexity represented by the ratio
of surface area to planar area [24]

363 Benthic Terrain Modeller
Tool for ArcGIS

Maximum curvature (Bathymetry) Describes the steepest curve of either plan or profile
convexity through a defined cell neighbourhood [40]

363 ENVI 4.7

Bathymetric Position Index
(Bathymetry)

Compares the elevation of each cell in a digital elevation
model to the mean elevation of a specified neighbourhood
around that cell [68]

Inner radius = 10,
Outer radius = 10,
Scale factor = 125

Benthic Terrain Modeller
Tool for ArcGIS

Slope (Bathymetry) Describes the maximum change in elevation between each
cell and cells in the analysis neighbourhood [20]

363 Spatial Analyst (ArcGIS 9.3)

Complexity (Bathymetry) Describes the rate of change in the bathymetry slope [20] 363 ENVI 4.7

Red, Green and Blue bands of Hue,
Saturation and Intensity
(Backscatter mosaic)

High and low frequency information of an image after
application of high and low pass filters, producing three
band images of Red, Green and Blue [43].

363 (high pass filter) and
11611 (low pass filter)

ENVI 4.7

Homogeneity, Entropy and Correlation
texture features (Backscatter mosaic)

Texture features calculated from Grey Level Co-occurrence
Matrices (GLCM) [44]

767 ENVI 4.7

doi:10.1371/journal.pone.0097339.t001

Benthic Habitat Mapping Using Multibeam Sonar

PLOS ONE | www.plosone.org 4 May 2014 | Volume 9 | Issue 5 | e97339



[51]. Z statistics were computed from pairwise combinations of the

error matrices to compare the model outputs [52].

Results

Backscatter angular response derivatives
The angular response mean (Figure 3a) was visually very similar

to the backscatter mosaic (Figure 1), but presented two peculiar-

ities. First, it showed more contrast and discrimination between

the low and high backscatter regions of the study site. Second, it

did not present the along-track artefacts that were still highly

visible in the mosaic, despite statistical compensation. Similar

observations were made for the angular response slope, although

the low/high backscatter discrimination was less distinct (Figure

3b). The angular response skewness and kurtosis maps (Figure 3c

and 3d) were very similar to each other, but showed little

resemblance to the backscatter mosaic, the angular response mean

and the angular response slope maps. In particular, the skewness

and kurtosis maps appeared to highlight areas in the south-west of

the study site that were not evident in the backscatter mosaic.

Correlation of the layers
Strong auto-correlation (.0.5) was found among several layers

derived from backscatter data, but not among bathymetry

products (Table 4). The highest R2 was found between the GLCM

Homogeneity and Entropy layers (0.98). Confirming the visual

analysis in the previous section, a high correlation was found

between the angular response mean and angular response slope

Figure 2. (a) Backscatter mosaic overlaid with the results of the region-growing segmentation. (b) Detailed view of the mosaic segmentation as
indicated by the red box in (a). (c) Examples of four different angular response curves computed from polygons 1–4 as indicated by the blue sections
in (b).
doi:10.1371/journal.pone.0097339.g002
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(0.75), between the angular response skewness and angular

response kurtosis (0.72) and between the mosaic and the angular

response mean (0.53). In comparison, the maximum R2 measured

between two layers derived from the bathymetry was relatively low

(0.43; between complexity and bathymetry slope). Relatively low

correlation was also observed between the original backscatter

mosaic and bathymetry (0.33).

Variable importance and feature selection
Bathymetry appeared the most important variable in the first

model, which included all layers, except angular response

Figure 3. Maps of the angular response features, derived from the backscatter angular response curves between 306 and 506; (a)
mean, (b) least square slope, (c) skewness and (d) kurtosis.
doi:10.1371/journal.pone.0097339.g003

Table 2. Number of samples used for model development and accuracy assessment, for each biota class.

Biota class
Number of samples used for model
development

Number of samples used for accuracy
assessment

Mixed Brown algae (MB) 1107 475

Invertebrates (INV) 11830 5070

Mixed Red algae and Invertebrates (MRI) 1391 596

No Visible Biota (NVB) 11915 5107

Mixed Brown algae and Invertebrates (MBI) 593 254

Mixed Brown algae and Mixed Red algae (MBMR) 62 26

Mixed Green algae and Invertebrates (MGI) 749 321

doi:10.1371/journal.pone.0097339.t002
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derivatives (Model 1, 14 variables Figure 4). The Red HSI layer

ranked second in importance. All other variables including,

interestingly, the mosaic itself, were found to be of very low

importance.

After the angular response derivatives were added (Model 2, 18

variables, Figure 4), bathymetry and angular response mean

ranked equally as the two most important variables, closely

followed by the three other angular response features (slope,

skewness and kurtosis). The other variables demonstrated similar

levels of low importance, as described previously for Model 1.

This order of variable importance was used to construct the

subsequent four models (Models 3 to 6, see Table 3). Model 3

contained the two most important variables; bathymetry and

angular response mean. The other three angular response

variables (slope, skewness and kurtosis) followed with moderate

importance, and were, therefore, added to generate Model 4. The

three HSI layers followed with relatively little importance, and

were added to generate Model 5. Finally, complexity, rugosity and

GLCM correlation showed slightly more importance compared to

the rest of the variables, and were added to generate Model 6.

Model performance
The two original models (Models 1 and 2) performed very well,

obtaining overall high accuracy and kappa coefficients (Table 3).

The inclusion of variables derived from the backscatter angular

response from Model 1 into Model 2 increased the overall

accuracy by 5.1% (88.5% to 93.6%) and the Kappa coefficient by

0.09 (0.81 to 0.90). The accuracy for all individual classes

improved with inclusion of angular response derivatives, particu-

larly for MBMR and MGI (Figure 5).

Interestingly, the simple models also achieved high accuracy,

with Model 3 achieving 90.2% overall accuracy and 0.84 Kappa

coefficient, despite being only driven by two variables (bathymetry

and angular response mean, Table 3). The least parsimonious of

the simple models (Model 6, Figure 6) performed as well as the full

model (Model 2), with 93.5% overall accuracy (down by only

0.1%) and the same Kappa coefficient (0.90). Indeed, pairwise

comparison of the error matrices from Models 2 and 6 indicated

no significant difference between these matrices (Z = 0.29, Table

5).

Discussion

Overall, all models derived in this study achieved good

accuracies, scoring between 88.5% and 93.6% (Table 3). These

scores were slightly above those reached by previous studies

implementing different decision tree techniques, such as CART,

Quick, Unbiased, Efficient Statistical Trees (QUEST) and

Classification Rule with Unbiased Interaction Selection and

Estimation (CRUISE), in comparable habitats of south west

Victoria, Australia [84% in 22, and 87% in 25, 80% in 26, 83% in

27]. In addition, the unique capability of RF algorithms to assess

the importance of the various predictors was used to build simpler

models. In the present work, the optimal model was Model 6,

because it only used 11 of the 18 features derived in this research

to achieve accuracy levels that were equivalent to the full model

that implemented the entire set of 18 variables (Model 2).

Although RF algorithms may include many variables while

remaining insensitive to over-fitting [53], the use of fewer variables

in the classification process has very practical benefits, in terms of

gain of computer processing time and effort.

These improved results were obtained using a novel approach

to integrate features derived from MBES backscatter angular

response curves – which are good predictors of sediment grain-size

Figure 4. Measures of the relative importance of the variables produced from Models 1 and 2. Bathy = Bathymetry, Comp =
Complexity, Asp = Aspect, BPI = Bathymetric Position Index, Slo = Bathymetry slope, Maxc = Maximum curvature, Rug = Rugosity, Mos =
Backscatter mosaic, HSIR = Red layer of Hue Saturation and Intensity (HSI), HSIG = Green layer of HSI, HSIB = Blue layer of HSI, Hom = GLCM
Homogeneity, Ent = GLCM Entropy, Cor = GLCM Correlation, ARmean = Mean of angular response, ARslo = Slope of angular response, ARsk =
Skewness of angular response and ARkur = Kurtosis of angular response.
doi:10.1371/journal.pone.0097339.g004

Benthic Habitat Mapping Using Multibeam Sonar

PLOS ONE | www.plosone.org 9 May 2014 | Volume 9 | Issue 5 | e97339



[17] – with features describing the texture and patterns in the

backscatter mosaic – which are good predictors of seafloor

substrate types [54] – as well as bathymetry and its most common

derived seascapes – which are good predictors of biological

communities distribution [22]. To our knowledge, this constitutes

the first benthic habitat mapping methodology exploiting the three

main MBES data sources that are bathymetry, mosaic and angular

response. In many fields linked to land mapping, improvements in

classification accuracy have similarly followed from the availability

of a large number of new features (i.e. spectral bands in

hyperspectral remote sensing) [55,56]. In comparison, the number

of variables available for mapping in the marine realm (primarily

from MBES) are severely restricted. The present study contributes

to the benthic habitat mapping field by increasing the range of

available acoustic variables that can be combined to characterise

benthic habitats.

The main result of this study is how statistical features

describing the backscatter angular response curves considerably

improved class differentiation. First, the classification accuracy and

the individual class accuracies were greatly improved by adding

angular response features (Model 2 compared to Model 1).

Secondly, the angular response mean was found to be the most

important of all backscatter data derivatives, out-performing even

the backscatter mosaic. In fact, all of the angular response features

were ranked as more important compared to the backscatter

mosaic or any of its derivatives. Finally, a simple model using only

the angular response mean and bathymetry yielded higher

accuracy (Model 3; 90.2%) compared to a model using mosaic,

6 mosaic derivatives, bathymetry and 6 bathymetry derivatives

(Model 1; 88.5%). These results suggest that the methodology

presented here deriving statistical features from the backscatter

angular response, successfully captured the characteristics of

backscatter variation at moderate incidence angles, which are

known to successfully discriminate between seabed types [18] or

benthic communities [41]. The fact that the angular response

mean has the appearance of a de-noised version of the backscatter

mosaic (Figures 1 and 3) probably also contributed to the success

of this feature. In effect, the speckle and nadir noise commonly

displayed in backscatter mosaics are likely to be responsible for

errors in the classification process, and, hence, hinder the

predictive power of the backscatter mosaic. By effectively

enhancing the meaningful backscatter contrasts between the small

regions of the study site, while removing the noise and maintaining

the mosaic spatial resolution, the methodology used to derive the

angular response mean in this study may be viewed as creating an

improved version of the backscatter mosaic.

The other three angular response features (slope, skewness and

kurtosis) were found to be more important compared to the

Table 5. Pairwise comparison of error matrices between Model 2 and the four simpler models.

Pairwise combination Z statistic Significant/Not significant*

Model 2 Model 3 9.54 Significant

Model 2 Model 4 11.22 Significant

Model 2 Model 5 3.91 Significant

Model 2 Model 6 0.29 Not significant

Model 2 included all variables, while the simpler models contained different combinations of the variables (see Table 3). The significant level indicates whether two error
matrices (i.e. from two different models) are completely different (significant), or capable of producing similar results (not significant).
*Significant at the 95% confidence interval (critical value Z = 1.96).
doi:10.1371/journal.pone.0097339.t005

Figure 5. Per class accuracy (mean of user and producer’s accuracy) for models 1 and 2 (with and without the backscatter angular
response features). MB = Mixed Brown algae, INV = Invertebrates, MRI = Mixed Red algae and Invertebrates, NVB = No Visible Biota, MBI =
Mixed Brown algae and Invertebrates, MBMR = Mixed Brown algae and Mixed Red algae, and MGI = Mixed Green algae and Invertebrates.
doi:10.1371/journal.pone.0097339.g005
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features derived from bathymetry and the mosaic, but were less

relevant compared to the angular response mean. Interestingly,

the addition of these three features to the model using only

bathymetry and angular response mean decreased the classifica-

tion accuracy (from Model 3; 90.2%, to Model 4; 89.7%). The

inconsistency between the relevance of these features and the

decrease in accuracy following their addition warrants future

investigation. At present, it may be assumed that the unique areas

that angular response skewness and angular response kurtosis

appeared to single out in the south-western part of the study site

(Figure 3) may be irrelevant in terms of habitat differences, and

might have caused some inconsistencies in the final habitat map.

The angular response slope probably does not contribute to this

problem as it is more similar to the angular response mean and the

original mosaic. Incorporating only the slope with bathymetry and

the angular response mean might have produced a more successful

model compared to Model 4.

Regardless of the success of using angular response features in

this study, bathymetry was found to be the single-most important

habitat predictor across all models. The high accuracy of the

simplest model using only bathymetry and angular response mean

in this study (Model 3), and the low correlation between these two

features, indicates that they contain very different and comple-

mentary information to predict benthic habitats. These results

reinforce the argument that benthic habitat mapping efforts should

not be based on backscatter data information alone [57].

Finally, a number of observations may be made for the less

relevant features in this study. Although bathymetry and the

angular response mean were undeniably the most important

features (Model 3), they did not produce the best accuracy alone.

The highest accuracy was achieved with a mix of bathymetry and

Figure 6. Habitat map of biota classes produced from the simplest model of variable combinations (Model 6) overlaid with the hill
shaded bathymetry.
doi:10.1371/journal.pone.0097339.g006
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mosaic derivatives (HSI layers, rugosity, complexity and GLCM

correlation; Model 6), indicating that these minor features

described subtle variations in terrain complexity across biotic

habitat types. The topographic features other than rugosity and

complexity (i.e. slope, aspect, maximum curvature and bathymet-

ric position index) did not make a significant contribution to this

study, which contrasted with the findings of previous works on the

distribution of habitats of shallow water mobile species [58,59].

The approach presented in this study and its accuracy results

are dependent on two main factors: the types of biological benthic

habitat present in the study site and the scheme originally used to

classify the ground-truth data. Soft sediments are the dominant

seabed types in the present study site; the shallower north eastern

areas inside Discovery Bay were largely composed of fine, well

sorted sand flats with some fine rippling, while sediments

composing the deeper areas to the west of the site tended to be

coarser and formed into broad (.40 cm), well defined sand waves.

These sediment dominated areas seldom had visible epifauna

present and were therefore clustered together under the ‘‘no visible

biota (NVB)’’ biotic habitat class, according to the classification

scheme chosen for the study. Yet, previous studies investigating

infaunal communities of eastern Victoria suggested that these

regions contain highly diverse temperate infaunal assemblages

[60,61]. Although assigned to only one class in this study,

researchers have found that unconsolidated, sandy sediments can

be further allocated to sub-classes which are acoustically distinct

based on sediment size, surface morphology, and compactness

[7,62–65]. Furthermore, there is evidence to suggest that distinct

assemblages of fish and invertebrates exist within and between

biotopes defined by grain size and ripple characteristics [66,67].

The present study did not identify such potential diversity due to

its classification scheme focusing on epifauna biota assemblages.

This limitation emphasizes how model accuracy results need to be

appreciated in the context of the ground-truth data being used and

the classification scheme that was applied to them. However, the

approach presented in this study is very flexible and could be

similarly applied to soft-sediment classification schemes to advance

the benthic characterisation of sediment types in benthic habitat

mapping studies.

Conclusions

The overall high accuracy of all models in this study indicated

that the suggestion to integrate angular response features with

bathymetry and backscatter mosaic and their derivatives is sound

and effective. High model accuracy was obtained using just

bathymetry and angular response mean, with this further

increasing following addition of other angular response features

and features considered relevant based on RF algorithm analyses.

While the angular response mean over mid-range incidence angles

proved an important contributor to improving our prediction of

benthic classes, the other angular response features (slope,

skewness and kurtosis) produced more mixed results. It is

anticipated that this methodology will be applied to other datasets

to assess whether these three features should be conserved or

abandoned, and if other angular features should be developed.

The results also confirmed that bathymetry remains the most

important predictor of marine biotic habitats, and highlighted that

some bathymetry and mosaic derivatives were rather irrelevant to

the classification process. These conclusions were reached by using

a classification algorithm that allowed the model variables to be

ranked by the importance of their contribution to the resulting

model. Since the importance of any given feature might depend on

the habitats present in the study area, we strongly recommend the

use of RF algorithms, or other classifiers that have this additional

capability.

Supporting Information

Supplementary S1 A zip file containing all Matlab codes
used in this paper to construct mean angular response
curves from homogeneous regions using the ‘‘proc’’ files
(processed files from the CMST MB Process software)
and user-set polygons (ArcMap shapefile format). Users

need to unzip this file and add all codes to their local Matlab path.

The main function is ‘inpoly_plosone_v1.m’ (to see full instruc-

tions, type ‘help inpoly_plosone_v1’ in the Matlab Command

Window). Running this code in Matlab will display a Matlab

graphical user interface to run the analysis (successfully tested on

Matlab R2013a 32-bit).
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