79 research outputs found

    Effect of the temperature in a mixed culture pilot scale aerobic process for food waste and sewage sludge conversion into polyhydroxyalkanoates

    Get PDF
    The utilisation of urban organic waste as feedstock for polyhydroxyalkanoates (PHA) production is growing since it allows to solve the main concerns about their disposal and simultaneously to recover added-value products. A pilot scale platform has been designed for this purpose. The VFA-rich fermentation liquid coming from the anaerobic treatment of both source-sorted organic fraction of municipal solid waste (OFMSW) and waste activated sludge (WAS) has been used as substrate for the aerobic process steps: a first sequencing batch reactor (SBR, 100 L) for the selection of a PHA-producing biomass, and a second fed-batch reactor (70 L) for PHA accumulation inside the cells. The SBR was operated at 2.0-4.4 kg COD/(m3 d) as OLR, under dynamic feeding regime (feast-famine) and short hydraulic retention time (HRT; 1 day). The selected biomass was able to accumulate up to 48% g PHA/g VSS. Both steps were performed without temperature (T) control, avoiding additional consumption of energy. In this regard, the applied OLR was tuned based on environmental T and, as a consequence, on biomass kinetic, in order to have a constant selective pressure. The latter was mainly quantified by the PHA storage yield (YP/Sfeast 0.34-0.45 CODP/CODS), which has been recognized as the main parameters affecting the global PHA productivity [1.02-1.82 g PHA/(L d)] of the process

    High Incidence of Childhood Type 1 Diabetes in Liguria, Italy, From 1989 to 1998

    Get PDF
    OBJECTIVE—Assessing updated incidence of type 1 diabetes in 0- to 14-year-old children in Liguria, a Northwest region of Italy. RESEARCH DESIGN AND METHODS—Incident cases were recorded prospectively from 1989 to 1998. Incidence rates (IRs) were standardized to the 1999 world population using the direct method. The independent effect of sex, age, residence, and calendar year was estimated with Poisson regression model. The degree of ascertainment was calculated in accordance to capture/recapture method. RESULTS—During 10 full calendar years, 219 new cases of type 1 diabetes in children were diagnosed in Liguria. The standardized IR over the 10-year period was 12.56 cases per 100,000 per year (95% CI 11.0–14.3). The sex-specific IR among men and women was 14.15 and 10.88, respectively. The age-specific IR was higher in the 10- to 14-year-old age-group (15.01/100,000) than in 0- to 4-year-old age-group (9.01/100,000) and in the 5- to 9-year-old age-group (13.03/100,000). CONCLUSIONS—The IR of type 1 diabetes in Liguria is among the highest in Southern Europe and approaches IRs of Northern European countries. In particular it is much higher than those reported in the surrounding Italian regions except for Sardinia. Therefore, the geographical distribution of type 1 diabetes does not seem to reflect the simple North-South gradient reported in several previous works

    Insights into the Predictors of Attitude toward Entomophagy: The Potential Role of Health Literacy: A Cross-Sectional Study Conducted in a Sample of Students of the University of Florence

    Get PDF
    In Western countries, one of the main barriers to entomophagy is repulsion toward insects. Few studies have investigated the factors that influence attitudes toward entomophagy. Therefore, we conducted a cross-sectional study involving a sample of 248 university students, focusing on disgust and other potential attributes that can influence insect consumption, including health literacy. We used a 17-item self-administered questionnaire. Consistent with the literature, two items were chosen as outcome variables to evaluate the predictors of the propensity to consume insects: “Have you ever eaten insects or insect-based products?” and “How disgusting do you find eating insects?” The data analysis shows that having already eaten insects is inversely associated with the level of disgust (OR: 0.1, p < 0.01); and it is positively associated with higher levels of health literacy (OR: 3.66, p > 0.01). Additionally, having some knowledge and information about entomophagy is inversely associated with a higher level of disgust (OR: 0.44, p = 0.03 and OR: 0.25, p = 0.03, respectively), while being female is positively associated with disgust (OR: 3.26, p < 0.01). Our results suggest the potential role of health literacy, in addition to other factors, in influencing the willingness to taste insects. However, further studies involving larger and non-convenience samples are needed to confirm our hypothesis

    Valorization of Municipal Biowaste into Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopapers for Food Packaging Applications

    Get PDF
    American Chemical Society[EN] The present study reports on the production and characterization of a new biopackaging material made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) derived from municipal biowaste (MBW) and produced by the mixed bacterial culture technology. After purification and extraction, the MBW-derived PHBV was processed by electrospinning to yield defect-free ultrathin fibers, which were thermally post-treated. Annealing at 130 degrees C, well below the biopolymer's melting temperature (T-m), successfully yielded a continuous film resulting from coalescence of the electrospun fibrillar morphology, the so-called biopaper, exhibiting enhanced optical and color properties compared to traditional melt compounding routes. The crystallinity and crystalline morphology were comprehensively studied as a function of temperature by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and combined time-resolved synchrotron small- and wide-angle X-ray scattering (SAXS and WAXS) experiments, which clearly indicated that the molecular order within the copolyester was improved up to a maximum at 130 degrees C, and then it decreased at the biopolymer's T-m. It was hypothesized that by annealing at the temperature at which the thermally induced molecular order is maximized, the fibers generated sufficient mobility to align alongside, hence reducing surface energy and porosity. The data suggest that this material shows a good balance between enhanced mechanical and improved barrier properties to vapors and gases in comparison to traditional paper and other currently used petroleum-derived polymers, thus presenting significant potential to be part of innovative food biopackaging designs for the protection and preservation of foods in a circular bioeconomy scenario.The Spanish Ministry of Science and Innovation (MICI) project RTI2018-097249-B-C21 and EU projects H2020 YPACK (reference number 773872) and H2020 USABLE (reference number 836884) are acknowledged for funding support. B.M.-R. and S.T.-G. would also like to thank MICI for the FPI fellowship (BES-2016-077972) and the Juan de la Cierva IncorporaciOn contract (IJCI-2016-29675), respectively. The ALBA Synchrotron, Spain, is also acknowledged for the funding received through the project proposal 2018022619. The authors also thank the "Unidad Asociada CSIC-UJI in Polymers Technology".Meléndez-Rodríguez, B.; Torres Giner, S.; Lorini, L.; Valentino, F.; Sammon, C.; Cabedo, L.; Lagaron, JM. (2020). Valorization of Municipal Biowaste into Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopapers for Food Packaging Applications. ACS Applied Bio Materials. 3(9):6110-6123. https://doi.org/10.1021/acsabm.0c00698S6110612339REHM, B. H. A. (2003). Polyester synthases: natural catalysts for plastics. Biochemical Journal, 376(1), 15-33. doi:10.1042/bj20031254Singh Saharan, B., Grewal, A., & Kumar, P. (2014). Biotechnological Production of Polyhydroxyalkanoates: A Review on Trends and Latest Developments. Chinese Journal of Biology, 2014, 1-18. doi:10.1155/2014/802984Koller, M., Maršálek, L., de Sousa Dias, M. M., & Braunegg, G. (2017). Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnology, 37, 24-38. doi:10.1016/j.nbt.2016.05.001Kourmentza, C., & Kornaros, M. (2016). Biotransformation of volatile fatty acids to polyhydroxyalkanoates by employing mixed microbial consortia: The effect of pH and carbon source. Bioresource Technology, 222, 388-398. doi:10.1016/j.biortech.2016.10.014Torres-Giner, S., Montanes, N., Fombuena, V., Boronat, T., & Sanchez-Nacher, L. (2016). Preparation and characterization of compression-molded green composite sheets made of poly(3-hydroxybutyrate) reinforced with long pita fibers. Advances in Polymer Technology, 37(5), 1305-1315. doi:10.1002/adv.21789Sängerlaub, S., Brüggemann, M., Rodler, N., Jost, V., & Bauer, K. D. (2019). Extrusion Coating of Paper with Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)—Packaging Related Functional Properties. Coatings, 9(7), 457. doi:10.3390/coatings9070457Acevedo, F., Villegas, P., Urtuvia, V., Hermosilla, J., Navia, R., & Seeger, M. (2018). Bacterial polyhydroxybutyrate for electrospun fiber production. International Journal of Biological Macromolecules, 106, 692-697. doi:10.1016/j.ijbiomac.2017.08.066Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2014). Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters. Journal of Food Engineering, 127, 1-9. doi:10.1016/j.jfoodeng.2013.11.022Laycock, B., Halley, P., Pratt, S., Werker, A., & Lant, P. (2013). The chemomechanical properties of microbial polyhydroxyalkanoates. Progress in Polymer Science, 38(3-4), 536-583. doi:10.1016/j.progpolymsci.2012.06.003Choi, J., & Lee, S. Y. (1997). Process analysis and economic evaluation for Poly(3-hydroxybutyrate) production by fermentation. Bioprocess Engineering, 17(6), 335. doi:10.1007/s004490050394Reis, M., Albuquerque, M., Villano, M., & Majone, M. (2011). Mixed Culture Processes for Polyhydroxyalkanoate Production from Agro-Industrial Surplus/Wastes as Feedstocks. Comprehensive Biotechnology, 669-683. doi:10.1016/b978-0-08-088504-9.00464-5Fernández-Dacosta, C., Posada, J. A., Kleerebezem, R., Cuellar, M. C., & Ramirez, A. (2015). Microbial community-based polyhydroxyalkanoates (PHAs) production from wastewater: Techno-economic analysis and ex-ante environmental assessment. Bioresource Technology, 185, 368-377. doi:10.1016/j.biortech.2015.03.025Gurieff, N., & Lant, P. (2007). Comparative life cycle assessment and financial analysis of mixed culture polyhydroxyalkanoate production. Bioresource Technology, 98(17), 3393-3403. doi:10.1016/j.biortech.2006.10.046Albuquerque, M. G. E., Torres, C. A. V., & Reis, M. A. M. (2010). Polyhydroxyalkanoate (PHA) production by a mixed microbial culture using sugar molasses: Effect of the influent substrate concentration on culture selection. Water Research, 44(11), 3419-3433. doi:10.1016/j.watres.2010.03.021Dionisi, D., Carucci, G., Papini, M. P., Riccardi, C., Majone, M., & Carrasco, F. (2005). Olive oil mill effluents as a feedstock for production of biodegradable polymers. Water Research, 39(10), 2076-2084. doi:10.1016/j.watres.2005.03.011Ali Hassan, M., Shirai, Y., Kusubayashi, N., Ismail Abdul Karim, M., Nakanishi, K., & Hasimoto, K. (1997). The production of polyhydroxyalkanoate from anaerobically treated palm oil mill effluent by Rhodobacter sphaeroides. Journal of Fermentation and Bioengineering, 83(5), 485-488. doi:10.1016/s0922-338x(97)83007-3Melendez-Rodriguez, B., Castro-Mayorga, J. L., Reis, M. A. M., Sammon, C., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2018). Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived From Fruit Pulp Biowaste. Frontiers in Sustainable Food Systems, 2. doi:10.3389/fsufs.2018.00038Colombo, B., Pepè Sciarria, T., Reis, M., Scaglia, B., & Adani, F. (2016). Polyhydroxyalkanoates (PHAs) production from fermented cheese whey by using a mixed microbial culture. Bioresource Technology, 218, 692-699. doi:10.1016/j.biortech.2016.07.024Morgan-Sagastume, F., Hjort, M., Cirne, D., Gérardin, F., Lacroix, S., Gaval, G., … Werker, A. (2015). Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale. Bioresource Technology, 181, 78-89. doi:10.1016/j.biortech.2015.01.046Mata-Alvarez, J., Dosta, J., Romero-Güiza, M. S., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412-427. doi:10.1016/j.rser.2014.04.039Korkakaki, E., Mulders, M., Veeken, A., Rozendal, R., van Loosdrecht, M. C. M., & Kleerebezem, R. (2016). PHA production from the organic fraction of municipal solid waste (OFMSW): Overcoming the inhibitory matrix. Water Research, 96, 74-83. doi:10.1016/j.watres.2016.03.033Zhang, M., Wu, H., & Chen, H. (2014). Coupling of polyhydroxyalkanoate production with volatile fatty acid from food wastes and excess sludge. Process Safety and Environmental Protection, 92(2), 171-178. doi:10.1016/j.psep.2012.12.002Coats, E. R., Loge, F. J., Wolcott, M. P., Englund, K., & McDonald, A. G. (2007). Synthesis of Polyhydroxyalkanoates in Municipal Wastewater Treatment. Water Environment Research, 79(12), 2396-2403. doi:10.2175/106143007x183907Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35(2-3), 151-160. doi:10.1016/0304-3886(95)00041-8Cherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115Cherpinski, A., Torres‐Giner, S., Cabedo, L., Méndez, J. A., & Lagaron, J. M. (2017). Multilayer structures based on annealed electrospun biopolymer coatings of interest in water and aroma barrier fiber‐based food packaging applications. Journal of Applied Polymer Science, 135(24), 45501. doi:10.1002/app.45501Spagnol, C., Fragal, E. H., Pereira, A. G. B., Nakamura, C. V., Muniz, E. C., Follmann, H. D. M., … Rubira, A. F. (2018). Cellulose nanowhiskers decorated with silver nanoparticles as an additive to antibacterial polymers membranes fabricated by electrospinning. Journal of Colloid and Interface Science, 531, 705-715. doi:10.1016/j.jcis.2018.07.096Hu, M., Li, C., Li, X., Zhou, M., Sun, J., Sheng, F., … Lu, L. (2017). Zinc oxide/silver bimetallic nanoencapsulated in PVP/PCL nanofibres for improved antibacterial activity. Artificial Cells, Nanomedicine, and Biotechnology, 46(6), 1248-1257. doi:10.1080/21691401.2017.1366339Alp-Erbay, E., Figueroa-Lopez, K. J., Lagaron, J. M., Çağlak, E., & Torres-Giner, S. (2019). The impact of electrospun films of poly(ε-caprolactone) filled with nanostructured zeolite and silica microparticles on in vitro histamine formation by Staphylococcus aureus and Salmonella Paratyphi A. Food Packaging and Shelf Life, 22, 100414. doi:10.1016/j.fpsl.2019.100414Quiles-Carrillo, L., Montanes, N., Lagaron, J., Balart, R., & Torres-Giner, S. (2019). Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers. Applied Sciences, 9(3), 533. doi:10.3390/app9030533Cherpinski, A., Gozutok, M., Sasmazel, H., Torres-Giner, S., & Lagaron, J. (2018). Electrospun Oxygen Scavenging Films of Poly(3-hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications. Nanomaterials, 8(7), 469. doi:10.3390/nano8070469Lasprilla-Botero, J., Torres-Giner, S., Pardo-Figuerez, M., Álvarez-Láinez, M., & M. Lagaron, J. (2018). Superhydrophobic Bilayer Coating Based on Annealed Electrospun Ultrathin Poly(ε-caprolactone) Fibers and Electrosprayed Nanostructured Silica Microparticles for Easy Emptying Packaging Applications. Coatings, 8(5), 173. doi:10.3390/coatings8050173Valentino, F., Moretto, G., Lorini, L., Bolzonella, D., Pavan, P., & Majone, M. (2019). Pilot-Scale Polyhydroxyalkanoate Production from Combined Treatment of Organic Fraction of Municipal Solid Waste and Sewage Sludge. Industrial & Engineering Chemistry Research, 58(27), 12149-12158. doi:10.1021/acs.iecr.9b01831Fiorese, Mã´. L., Freitas, F., Pais, J., Ramos, A. M., de Aragão, G. M. F., & Reis, M. A. M. (2009). Recovery of polyhydroxybutyrate (PHB) from Cupriavidus necator biomass by solvent extraction with 1,2-propylene carbonate. Engineering in Life Sciences, 9(6), 454-461. doi:10.1002/elsc.200900034Madkour, M. H., Heinrich, D., Alghamdi, M. A., Shabbaj, I. I., & Steinbüchel, A. (2013). PHA Recovery from Biomass. Biomacromolecules, 14(9), 2963-2972. doi:10.1021/bm4010244Griffin, G. J. L. (Ed.). (1994). Chemistry and Technology of Biodegradable Polymers. doi:10.1007/978-94-011-1330-4Li, L., Huang, W., Wang, B., Wei, W., Gu, Q., & Chen, P. (2015). Properties and structure of polylactide/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PLA/PHBV) blend fibers. Polymer, 68, 183-194. doi:10.1016/j.polymer.2015.05.024Torres-Giner, S., Wilkanowicz, S., Melendez-Rodriguez, B., & Lagaron, J. M. (2017). Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging. Journal of Agricultural and Food Chemistry, 65(22), 4439-4448. doi:10.1021/acs.jafc.7b01393Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Bernardos, A., Martínez-Máñez, R., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2019). Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials, 9(2), 227. doi:10.3390/nano9020227Shiku, Y., Yuca Hamaguchi, P., Benjakul, S., Visessanguan, W., & Tanaka, M. (2004). Effect of surimi quality on properties of edible films based on Alaska pollack. Food Chemistry, 86(4), 493-499. doi:10.1016/j.foodchem.2003.09.022Kanatt, S. R., Rao, M. S., Chawla, S. P., & Sharma, A. (2012). Active chitosan–polyvinyl alcohol films with natural extracts. Food Hydrocolloids, 29(2), 290-297. doi:10.1016/j.foodhyd.2012.03.005Arfat, Y. A., Ahmed, J., Hiremath, N., Auras, R., & Joseph, A. (2017). Thermo-mechanical, rheological, structural and antimicrobial properties of bionanocomposite films based on fish skin gelatin and silver-copper nanoparticles. Food Hydrocolloids, 62, 191-202. doi:10.1016/j.foodhyd.2016.08.009Agüero, A., Morcillo, M. del C., Quiles-Carrillo, L., Balart, R., Boronat, T., Lascano, D., … Fenollar, O. (2019). Study of the Influence of the Reprocessing Cycles on the Final Properties of Polylactide Pieces Obtained by Injection Molding. Polymers, 11(12), 1908. doi:10.3390/polym11121908Melendez-Rodriguez, B., Torres-Giner, S., Aldureid, A., Cabedo, L., & Lagaron, J. M. (2019). Reactive Melt Mixing of Poly(3-Hydroxybutyrate)/Rice Husk Flour Composites with Purified Biosustainably Produced Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate). Materials, 12(13), 2152. doi:10.3390/ma12132152Kunasundari, B., & Sudesh, K. (2011). Isolation and recovery of microbial polyhydroxyalkanoates. Express Polymer Letters, 5(7), 620-634. doi:10.3144/expresspolymlett.2011.60Figueroa-Lopez, K. J., Vicente, A. A., Reis, M. A. M., Torres-Giner, S., & Lagaron, J. M. (2019). Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials, 9(2), 144. doi:10.3390/nano9020144Jung, H.-R., Choi, T.-R., Han, Y. H., Park, Y.-L., Park, J. Y., Song, H.-S., … Yang, Y.-H. (2020). Production of blue-colored polyhydroxybutyrate (PHB) by one-pot production and coextraction of indigo and PHB from recombinant Escherichia coli. Dyes and Pigments, 173, 107889. doi:10.1016/j.dyepig.2019.107889Zhang, K., Misra, M., & Mohanty, A. K. (2014). Toughened Sustainable Green Composites from Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Based Ternary Blends and Miscanthus Biofiber. ACS Sustainable Chemistry & Engineering, 2(10), 2345-2354. doi:10.1021/sc500353vSanchez-Garcia, M. D., Gimenez, E., & Lagaron, J. M. (2008). Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydrate Polymers, 71(2), 235-244. doi:10.1016/j.carbpol.2007.05.041Castro Mayorga, J. L., Fabra Rovira, M. J., Cabedo Mas, L., Sánchez Moragas, G., & Lagarón Cabello, J. M. (2017). Antimicrobial nanocomposites and electrospun coatings based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and copper oxide nanoparticles for active packaging and coating applications. Journal of Applied Polymer Science, 135(2), 45673. doi:10.1002/app.45673Castro-Mayorga, J. L., Fabra, M. J., & Lagaron, J. M. (2016). Stabilized nanosilver based antimicrobial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites of interest in active food packaging. Innovative Food Science & Emerging Technologies, 33, 524-533. doi:10.1016/j.ifset.2015.10.019Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057Torres-Giner, S., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. Journal of Applied Polymer Science, 122(2), 914-925. doi:10.1002/app.34208Riekel, C., Garc�a Guti�rrez, M. C., Gourrier, A., & Roth, S. (2003). Recent synchrotron radiation microdiffraction experiments on polymer and biopolymer fibers. Analytical and Bioanalytical Chemistry, 376(5), 594-601. doi:10.1007/s00216-003-1976-0Sato, H., Suttiwijitpukdee, N., Hashimoto, T., & Ozaki, Y. (2012). Simultaneous Synchrotron SAXS/WAXD Study of Composition Fluctuations, Cold-Crystallization, and Melting in Biodegradable Polymer Blends of Cellulose Acetate Butyrate and Poly(3-hydroxybutyrate). Macromolecules, 45(6), 2783-2795. doi:10.1021/ma202606yVahabi, H., Michely, L., Moradkhani, G., Akbari, V., Cochez, M., Vagner, C., … Langlois, V. (2019). Thermal Stability and Flammability Behavior of Poly(3-hydroxybutyrate) (PHB) Based Composites. Materials, 12(14), 2239. doi:10.3390/ma12142239Panaitescu, D. M., Nicolae, C. A., Frone, A. N., Chiulan, I., Stanescu, P. O., Draghici, C., … Mihailescu, M. (2017). Plasticized poly(3-hydroxybutyrate) with improved melt processing and balanced properties. Journal of Applied Polymer Science, 134(19). doi:10.1002/app.44810S̆krbić, Z., & Divjaković, V. (1996). Temperature influence on changes of parameters of the unit cell of biopolymer PHB. Polymer, 37(3), 505-507. doi:10.1016/0032-3861(96)82922-3Harini, K., & Sukumar, M. (2019). Development of cellulose-based migratory and nonmigratory active packaging films. Carbohydrate Polymers, 204, 202-213. doi:10.1016/j.carbpol.2018.10.018Tanpichai, S., Witayakran, S., Wootthikanokkhan, J., Srimarut, Y., Woraprayote, W., & Malila, Y. (2020). Mechanical and antibacterial properties of the chitosan coated cellulose paper for packaging applications: Effects of molecular weight types and concentrations of chitosan. International Journal of Biological Macromolecules, 155, 1510-1519. doi:10.1016/j.ijbiomac.2019.11.128Cherpinski, A., Torres-Giner, S., Vartiainen, J., Peresin, M. S., Lahtinen, P., & Lagaron, J. M. (2018). Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose, 25(2), 1291-1307. doi:10.1007/s10570-018-1648-zTorres-Giner, S., Hilliou, L., Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Madalena, D., Cabedo, L., … Lagaron, J. M. (2018). Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packaging and Shelf Life, 17, 39-49. doi:10.1016/j.fpsl.2018.05.002Shibata, M., Oyamada, S., Kobayashi, S., & Yaginuma, D. (2004). Mechanical properties and biodegradability of green composites based on biodegradable polyesters and lyocell fabric. Journal of Applied Polymer Science, 92(6), 3857-3863. doi:10.1002/app.20405Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. Journal of Polymers and the Environment, 27(1), 84-96. doi:10.1007/s10924-018-1324-2Ali Dadfar, S. M., Alemzadeh, I., Reza Dadfar, S. M., & Vosoughi, M. (2011). Studies on the oxygen barrier and mechanical properties of low density polyethylene/organoclay nanocomposite films in the presence of ethylene vinyl acetate copolymer as a new type of compatibilizer. Materials & Design, 32(4), 1806-1813. doi:10.1016/j.matdes.2010.12.028Sanchez-Garcia, M. D., Gimenez, E., & Lagaron, J. M. (2007). Novel PET Nanocomposites of Interest in Food Packaging Applications and Comparative Barrier Performance With Biopolyester Nanocomposites. Journal of Plastic Film & Sheeting, 23(2), 133-148. doi:10.1177/8756087907083590Lagaron, J.-M. (2011). Multifunctional and nanoreinforced polymers for food packaging. doi:10.1533/978085709278

    Identification of Novel Wsf1 Mutations in a Sicilian Child with Wolfram Syndrome

    Get PDF
    Wolfram Syndrome (WS) is a rare hereditary disease with autosomal recessive inheritance with incomplete penetrance. It is characterized by diabetes mellitus associated with progressive optic atrophy. The diagnosis is essentially clinical and mutation analysis is used to confirm the diagnosis. In the present study we describe the clinical and molecular features of a diabetic child carrying two novel WFS1 mutations. The Sicilian proband and his non-affected family were studied. Ophthalmologic examination included: visual acuity determination and funduscopy, optical coherent tomography, retinal fluorangiography, perimetry and electroretinogram. Molecular methods: automatic sequencing of PCR amplified WFS1 gene fragments and qRT-PCR analysis of WFS1 transcripts. 3 WSF1 mutations have been identified in the proband. One allele carries 2 paternally inherited mutations (c.1332 C>G and c.1631C>G) in exon-8, never annotated before, in heterozygosis with one “de novo” classic mutation (c.505 G>A) in exon-5. In addition, we report an unexpected molecular feature: higher WFS1 mRNA levels in the proband compared to the father

    The metabolic fingerprints of HCV and HBV infections studied by Nuclear Magnetic Resonance Spectroscopy

    Get PDF
    Abstract Few studies are available on metabolic changes in liver injuries and this is the first metabolomic study evaluating a group of HCV-positive patients, before and after viral eradication via DAA IFN-free regimens, using 1H-NMR to characterize and compare their serum fingerprints to naïve HBV-patients and healthy donors. The investigation clearly shows differences in the metabolomic profile of HCV patients before and after effective DAA treatment. Significant changes in metabolites levels in patients undergoing therapy suggest alterations in several metabolic pathways. It has been shown that 1H-NMR fingerprinting approach is an optimal technique in predicting the specific infection and the healthy status of studied subjects (Monte-Carlo cross validated accuracies: 86% in the HCV vs HBV model, 98.7% in the HCV vs HC model). Metabolite data collected support the hypothesis that the HCV virus induces glycolysis over oxidative phosphorylation in a similar manner to the Warburg effect in cancer, moreover our results have demonstrated a different action of the two viruses on cellular metabolism, corroborating the hypothesis that the metabolic perturbation on patients could be attributed to a direct role in viral infection. This metabolomic study has revealed some alteration in metabolites for the first time (2-oxoglutarate and 3-hydroxybutrate) concerning the HCV-infection model that could explain several extrahepatic manifestations associated with such an infection

    Recirculation factor as a key parameter in continuous-flow biomass selection for polyhydroxyalkanoates production

    Get PDF
    The effectiveness of polyhydroxyalkanoates (PHA) production with mixed microbial cultures (MMC) largely depends on the selection of PHA-storing microorganisms, conventionally performed in sequencing batch reactors (SBR). These, although easily allow the establishment of the required feast and famine (FF) regime, can represent a factor of cost increase when the process is scaled up. Here, a novel continuous-flow process for MMC selection under FF conditions has been developed by using two sequentially operated reactors. The feast reactor, having a tubular configuration, was continuously fed with a synthetic mixture of acetic and propionic acids (at an organic loading rate of 2.12 gCOD/L d) and the effluent of this reactor was in part sent to the CSTR famine reactor. The recirculation factor (RC), that is the ratio between the recirculation flow rate and the feeding flow rate to the feast reactor, was the main parameter investigated. Four different runs were performed with the RC varying from 1 to 8 and the increase in its value caused a decrease of the biomass residence time in each reactor. The intracellular PHA content in the feast reactor almost linearly increased up to RC 4 (with a value of 34 ± 2 %, wt/wt) and dropped at the RC 8 condition that, however, showed the maximum PHA content (58 ± 5 %, wt/wt) during the accumulation tests. Indeed, the relative abundance of sequences affiliated with putative PHA-storing bacteria increased up to 90.5 % at RC 8 and were dominated by members of the Alphaproteobacteria class mostly represented by the genus Meganema (74 %)

    Polychlorinated biphenyl profile in polyhydroxy-alkanoates synthetized from urban organicwastes

    Get PDF
    Call CIRC-05-2016The microbial synthesis of polyhydroxyalkanoates (PHA) from organic wastes is a valuable process to valorize available renewable resources, such as food wastes and biological sludge. Bioplastics find many applications in various sectors, from medical field to food industry. However, persistent organic pollutants could be transferred from wastes to the final product. The present paper demonstrates that the use of municipal wastes in PHA production is safe for the environment and human health and provides a polychlorinated biphenyl (PCB) profile in both commercial and waste-based PHA samples. PCB analysis in several PHA samples showed very low concentrations of the target analytes. Commercial PHA samples showed a similar PCB level with respect to PHA samples from municipal waste/sludge and higher than PHA samples from fruit waste. For all analyzed PCBs, detected concentrations were consistently lower than the ones reported in regulatory framework or guidelines.publishersversionpublishe

    COVID-19 vaccine immunogenicity in 16 patients with autoimmune systemic diseases. Lack of both humoral and cellular response to booster dose and ongoing disease modifying therapies

    Get PDF
    Patients with autoimmune systemic diseases (ASDs) represent a frail population during the ongoing COVID-19 pandemic. The vaccination is the major preventive measure; however, a significant number of ASD patients show an impaired production of anti-COVID-19 neutralizing antibodies (NAb), possibly counterbalanced by adequate T-cell response. The present study aimed at evaluating both humoral and cellular response to COVID-19 vaccine booster dose in this particular setting
    corecore