27 research outputs found

    Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations.

    Get PDF
    The prevalence and spectrum of germline mutations in BRCA1 and BRCA2 have been reported in single populations, with the majority of reports focused on White in Europe and North America. The Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) has assembled data on 18,435 families with BRCA1 mutations and 11,351 families with BRCA2 mutations ascertained from 69 centers in 49 countries on six continents. This study comprehensively describes the characteristics of the 1,650 unique BRCA1 and 1,731 unique BRCA2 deleterious (disease-associated) mutations identified in the CIMBA database. We observed substantial variation in mutation type and frequency by geographical region and race/ethnicity. In addition to known founder mutations, mutations of relatively high frequency were identified in specific racial/ethnic or geographic groups that may reflect founder mutations and which could be used in targeted (panel) first pass genotyping for specific populations. Knowledge of the population-specific mutational spectrum in BRCA1 and BRCA2 could inform efficient strategies for genetic testing and may justify a more broad-based oncogenetic testing in some populations

    XLVIII Coloquio Argentino de Estadística. VI Jornada de Educación Estadística Martha Aliaga Modalidad virtual

    Get PDF
    Esta publicación es una compilación de las actividades realizadas en el marco del XLVIII Coloquio Argentino de Estadística y la VI Jornada de Educación Estadística Martha Aliaga organizada por la Sociedad Argentina de Estadística y la Facultad de Ciencias Económicas. Se presenta un resumen para cada uno de los talleres, cursos realizados, ponencias y poster presentados. Para los dos últimos se dispone de un hipervínculo que direcciona a la presentación del trabajo. Ellos obedecen a distintas temáticas de la estadística con una sesión especial destinada a la aplicación de modelos y análisis de datos sobre COVID-19.Fil: Saino, Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Stimolo, María Inés. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Ortiz, Pablo. Universidad Nacional de córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Guardiola, Mariana. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Aguirre, Alberto Frank Lázaro. Universidade Federal de Alfenas. Departamento de Estatística. Instituto de Ciências Exatas; Brasil.Fil: Alves Nogueira, Denismar. Universidade Federal de Alfenas. Departamento de Estatística. Instituto de Ciências Exatas; Brasil.Fil: Beijo, Luiz Alberto. Universidade Federal de Alfenas. Departamento de Estatística. Instituto de Ciências Exatas; Brasil.Fil: Solis, Juan Manuel. Universidad Nacional de Jujuy. Centro de Estudios en Bioestadística, Bioinformática y Agromática; Argentina.Fil: Alabar, Fabio. Universidad Nacional de Jujuy. Centro de Estudios en Bioestadística, Bioinformática y Agromática; Argentina.Fil: Ruiz, Sebastián León. Universidad Nacional de Jujuy. Centro de Estudios en Bioestadística, Bioinformática y Agromática; Argentina.Fil: Hurtado, Rafael. Universidad Nacional de Jujuy; Argentina.Fil: Alegría Jiménez, Alfredo. Universidad Técnica Federico Santa María. Departamento de Matemática; Chile.Fil: Emery, Xavier. Universidad de Chile. Departamento de Ingeniería en Minas; Chile.Fil: Emery, Xavier. Universidad de Chile. Advanced Mining Technology Center; Chile.Fil: Álvarez-Vaz, Ramón. Universidad de la República. Instituto de Estadística. Departamento de Métodos Cuantitativos; Uruguay.Fil: Massa, Fernando. Universidad de la República. Instituto de Estadística. Departamento de Métodos Cuantitativos; Uruguay.Fil: Vernazza, Elena. Universidad de la República. Facultad de Ciencias Económicas y de Administración. Instituto de Estadística; Uruguay.Fil: Lezcano, Mikaela. Universidad de la República. Facultad de Ciencias Económicas y de Administración. Instituto de Estadística; Uruguay.Fil: Urruticoechea, Alar. Universidad Católica del Uruguay. Facultad de Ciencias de la Salud. Departamento de Neurocognición; Uruguay.Fil: del Callejo Canal, Diana. Universidad Veracruzana. Instituto de Investigación de Estudios Superiores, Económicos y Sociales; México.Fil: Canal Martínez, Margarita. Universidad Veracruzana. Instituto de Investigación de Estudios Superiores, Económicos y Sociales; México.Fil: Ruggia, Ornela. CONICET; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de desarrollo rural; Argentina.Fil: Tolosa, Leticia Eva. Universidad Nacional de Córdoba; Argentina. Universidad Católica de Córdoba; Argentina.Fil: Rojo, María Paula. Universidad Nacional de Córdoba; Argentina.Fil: Nicolas, María Claudia. Universidad Nacional de Córdoba; Argentina. Universidad Católica de Córdoba; Argentina.Fil: Barbaroy, Tomás. Universidad Nacional de Córdoba; Argentina.Fil: Villarreal, Fernanda. CONICET, Universidad Nacional del Sur. Instituto de Matemática de Bahía Blanca (INMABB); Argentina.Fil: Pisani, María Virginia. Universidad Nacional del Sur. Departamento de Matemática; Argentina.Fil: Quintana, Alicia. Universidad Nacional del Sur. Departamento de Matemática; Argentina.Fil: Elorza, María Eugenia. CONICET. Universidad Nacional del Sur. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina.Fil: Peretti, Gianluca. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Buzzi, Sergio Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística y Matemática; Argentina.Fil: Settecase, Eugenia. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadísticas. Instituto de Investigaciones Teóricas y Aplicadas en Estadística; Argentina.Fil: Settecase, Eugenia. Department of Agriculture and Fisheries. Leslie Research Facility; Australia.Fil: Paccapelo, María Valeria. Department of Agriculture and Fisheries. Leslie Research Facility; Australia.Fil: Cuesta, Cristina. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadísticas. Instituto de Investigaciones Teóricas y Aplicadas en Estadística; Argentina.Fil: Saenz, José Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Luna, Silvia. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Paredes, Paula. Universidad Nacional de la Patagonia Austral; Argentina. Instituto Nacional de Tecnología Agropecuaria. Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Maglione, Dora. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Rosas, Juan E. Instituto Nacional de Investigación Agropecuaria (INIA); Uruguay.Fil: Pérez de Vida, Fernando. Instituto Nacional de Investigación Agropecuaria (INIA); Uruguay.Fil: Marella, Muzio. Sociedad Anónima Molinos Arroceros Nacionales (SAMAN); Uruguay.Fil: Berberian, Natalia. Universidad de la República. Facultad de Agronomía; Uruguay.Fil: Ponce, Daniela. Universidad Estadual Paulista. Facultad de Medicina; Brasil.Fil: Silveira, Liciana Vaz de A. Universidad Estadual Paulista; Brasil.Fil: Freitas Galletti, Agda Jessica de. Universidad Estadual Paulista; Brasil.Fil: Bellassai, Juan Carlos. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigación y Estudios de Matemáticas (CIEM-Conicet); Argentina.Fil: Pappaterra, María Lucía. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigación y Estudios de Matemáticas (CIEM-Conicet); Argentina.Fil: Ojeda, Silvia María. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Ascua, Melina Belén. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Roldán, Dana Agustina. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Rodi, Ayrton Luis. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Ventre, Giuliana. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: González, Agustina. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina.Fil: Palacio, Gabriela. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina.Fil: Bigolin, Sabina. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina.Fil: Ferrero, Susana. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina.Fil: Del Medico, Ana Paula. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR); Argentina.Fil: Pratta, Guillermo. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR); Argentina.Fil: Tenaglia, Gerardo. Instituto Nacional de Tecnología Agropecuaria. Instituto de Investigación y Desarrollo Tecnológico para la Agricultura Familiar; Argentina.Fil: Lavalle, Andrea. Universidad Nacional del Comahue. Departamento de Estadística; Argentina.Fil: Demaio, Alejo. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Hernández, Paz. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Di Palma, Fabricio. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Calizaya, Pablo. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Avalis, Francisca. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Caro, Norma Patricia. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Caro, Norma Patricia. Universidad Nacional de Córdoba. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Fernícola, Marcela. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Nuñez, Myriam. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Dundray, , Fabián. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Calviño, Amalia. Universidad de Buenos Aires. Instituto de Química y Metabolismo del Fármaco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Farfán Machaca, Yheni. Universidad Nacional de San Antonio Abad del Cusco. Departamento Académico de Matemáticas y Estadística; Argentina.Fil: Paucar, Guillermo. Universidad Nacional de San Antonio Abad del Cusco. Departamento Académico de Matemáticas y Estadística; Argentina.Fil: Coaquira, Frida. Universidad Nacional de San Antonio Abad del Cusco. Escuela de posgrado UNSAAC; Argentina.Fil: Ferreri, Noemí M. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Pascaner, Melina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Martinez, Facundo. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Bossolasco, María Luisa. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; Argentina.Fil: Bortolotto, Eugenia B. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina.Fil: Bortolotto, Eugenia B. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Faviere, Gabriela S. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina.Fil: Faviere, Gabriela S. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Angelini, Julia. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina.Fil: Angelini, Julia. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Cervigni, Gerardo. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina.Fil: Cervigni, Gerardo. Universidad Nacional de Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Valentini, Gabriel. Instituto Nacional de Tecnología Agropecuaria. Estación Experimental Agropecuaria INTA San Pedro; Argentina.Fil: Chiapella, Luciana C.. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina.Fil: Chiapella, Luciana C. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina.Fil: Grendas, Leandro. Universidad Buenos Aires. Facultad de Medicina. Instituto de Farmacología; Argentina.Fil: Daray, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina.Fil: Daray, Federico. Universidad Buenos Aires. Facultad de Medicina. Instituto de Farmacología; Argentina.Fil: Leal, Danilo. Universidad Andrés Bello. Facultad de Ingeniería; Chile.Fil: Nicolis, Orietta. Universidad Andrés Bello. Facultad de Ingeniería; Chile.Fil: Bonadies, María Eugenia. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Ponteville, Christiane. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Catalano, Mara. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Catalano, Mara. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Dillon, Justina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Carnevali, Graciela H. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina.Fil: Justo, Claudio Eduardo. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Agrimensura. Grupo de Aplicaciones Matemáticas y Estadísticas (UIDET); Argentina.Fil: Iglesias, Maximiliano. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Estadística y Demografía; Argentina.Fil: Gómez, Pablo Sebastián. Universidad Nacional de Córdoba. Facultad de Ciencias Sociales. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Real, Ariel Hernán. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina.Fil: Vargas, Silvia Lorena. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina.Fil: López Calcagno, Yanil. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina.Fil: Batto, Mabel. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina.Fil: Sampaolesi, Edgardo. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina.Fil: Tealdi, Juan Manuel. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Buzzi, Sergio Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística y Matemática; Argentina.Fil: García Bazán, Gaspar. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Monroy Caicedo, Xiomara Alejandra. Universidad Nacional de Rosario; Argentina.Fil: Bermúdez Rubio, Dagoberto. Universidad Santo Tomás. Facultad de Estadística; Colombia.Fil: Ricci, Lila. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Centro Marplatense de Investigaciones Matemáticas; Argentina.Fil: Kelmansky, Diana Mabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina.Fil: Rapelli, Cecilia. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Escuela de Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: García, María del Carmen. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Escuela de Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Bussi, Javier. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Méndez, Fernanda. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística (IITAE); Argentina.Fil: García Mata, Luis Ángel. Universidad Nacional Autónoma de México. Facultad de Estudios Superiores Acatlán; México.Fil: Ramírez González, Marco Antonio. Universidad Nacional Autónoma de México. Facultad de Estudios Superiores Acatlán; México.Fil: Rossi, Laura. Universidad Nacional de Cuyo. Facultad de Ciencias Económicas; Argentina.Fil: Vicente, Gonzalo. Universidad Nacional de Cuyo. Facultad de Ciencias Económicas; Argentina. Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas; España.Fil: Scavino, Marco. Universidad de la República. Facultad de Ciencias Económicas y de Administración. Instituto de Estadística; Uruguay.Fil: Estragó, Virginia. Presidencia de la República. Comisión Honoraria para la Salud Cardiovascular; Uruguay.Fil: Muñoz, Matías. Presidencia de la República. Comisión Honoraria para la Salud Cardiovascular; Uruguay.Fil: Castrillejo, Andrés. Universidad de la República. Facultad de Ciencias Económicas y de Administración. Instituto de Estadística; Uruguay.Fil: Da Rocha, Naila Camila. Universidade Estadual Paulista Júlio de Mesquita Filho- UNESP. Departamento de Bioestadística; BrasilFil: Macola Pacheco Barbosa, Abner. Universidade Estadual Paulista Júlio de Mesquita Filho- UNESP; Brasil.Fil: Corrente, José Eduardo. Universidade Estadual Paulista Júlio de Mesquita Filho – UNESP. Instituto de Biociencias. Departamento de Bioestadística; Brasil.Fil: Spataro, Javier. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Economía; Argentina.Fil: Salvatierra, Luca Mauricio. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Nahas, Estefanía. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Márquez, Viviana. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Boggio, Gabriela. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Arnesi, Nora. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Harvey, Guillermina. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Settecase, Eugenia. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística; Argentina.Fil: Wojdyla, Daniel. Duke University. Duke Clinical Research Institute; Estados Unidos.Fil: Blasco, Manuel. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Economía y Finanzas; Argentina.Fil: Stanecka, Nancy. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Estadística y Demografía; Argentina.Fil: Caro, Valentina. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Instituto de Estadística y Demografía; Argentina.Fil: Sigal, Facundo. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Economía; Argentina.Fil: Blacona, María Teresa. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística. Escuela de Estadística; Argentina.Fil: Rodriguez, Norberto Vicente. Universidad Nacional de Tres de Febrero; Argentina.Fil: Loiacono, Karina Valeria. Universidad Nacional de Tres de Febrero; Argentina.Fil: García, Gregorio. Instituto Nacional de Estadística y Censos. Dirección Nacional de Metodología Estadística; Argentina.Fil: Ciardullo, Emanuel. Instituto Nacional de Estadística y Censos. Dirección Nacional de Metodología Estadística; Argentina.Fil: Ciardullo, Emanuel. Instituto Nacional de Estadística y Censos. Dirección Nacional de Metodología Estadística; Argentina.Fil: Funkner, Sofía. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: Dieser, María Paula. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: Martín, María Cristina. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: Martín, María Cristina. Universidad Nacional del Sur. Departamento de Matemática; Argentina.Fil: Peitton, Lucas. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística; Argentina. Queensland Department of Agriculture and Fisheries; Australia.Fil: Borgognone, María Gabriela. Queensland Department of Agriculture and Fisheries; Australia.Fil: Terreno, Dante D. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Contabilidad; Argentina.Fil: Castro González, Enrique L. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Contabilidad; Argentina.Fil: Roldán, Janina Micaela. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina.Fil: González, Gisela Paula. CONICET. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina. Universidad Nacional del Sur; Argentina.Fil: De Santis, Mariana. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; Argentina.Fil: Geri, Milva. CONICET. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina.Fil: Geri, Milva. Universidad Nacional del Sur. Departamento de Economía; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina.Fil: Marfia, Martín. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina.Fil: Kudraszow, Nadia L. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Matemática de La Plata; Argentina.Fil: Closas, Humberto. Universidad Tecnológica Nacional; Argentina.Fil: Amarilla, Mariela. Universidad Tecnológica Nacional; Argentina.Fil: Jovanovich, Carina. Universidad Tecnológica Nacional; Argentina.Fil: de Castro, Idalia. Universidad Nacional del Nordeste; Argentina.Fil: Franchini, Noelia. Universidad Nacional del Nordeste; Argentina.Fil: Cruz, Rosa. Universidad Nacional del Nordeste; Argentina.Fil: Dusicka, Alicia. Universidad Nacional del Nordeste; Argentina.Fil: Quaglino, Marta. Universidad Nacional de Rosario; Argentina.Fil: Kalauz, Roberto José Andrés. Investigador Independiente; Argentina.Fil: González, Mariana Verónica. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas. Departamento de Estadística y Matemáticas; Argentina.Fil: Lescano, Maira Celeste.

    Efecto de la administración semanal de ácido fólico sobre los valores sanguíneos The effect of weekly administration of folic acid on folic blood levels

    No full text
    OBJETIVO: Evaluar el efecto de la administración de 5 mg por semana de ácido fólico sobre los valores sanguíneos. MATERIAL Y MÉTODOS: Estudio de comparación concurrente realizado en zonas urbanas y rurales del estado de Nuevo León, México, en 1998, a 74 mujeres, 39 de ellas con antecedente de un producto con defecto de cierre del tubo neural y 35 sin dicho antecedente. La muestra sólo incluyó a mujeres que parieron durante 1997. Las mujeres recibieron 5 mg de ácido fólico por semana durante tres meses. El AF sanguíneo fue determinado por radioinmunoanálisis (RIA), al inicio y una semana después de la última tableta. Se calcularon promedios y desviaciones estándar. RESULTADOS: El 90% de las mujeres aumentó significativamente los valores sanguíneos. El ácido fólico intraeritrocitario se incrementó de 150.49 ± 31.17 ng/ml a 184.21 ± 35.53 ng/ml (phttp://www.insp.mx/salud/index.htmlOBJECTIVE: To evaluate the effect of weekly administration of 5 mg. folic acid (FA) intake on folic acid blood levels. MATERIAL AND METHODS: This concurrent comparative study was conducted in 1998, in urban and rural areas of Nuevo Leon State, Mexico. The study population consisted of 74 women who delivered a child during 1997, 39 of whom had a child with a neural tube defect. Women were given 5 mg. of folic acid, weekly for 3 months. Blood levels of folic acid were determined by radioimmunoassay (RIA) at baseline, and a week after taking the last folic acid dose. Data are presented as means and standard deviations. RESULTS: Ninety per cent of the women had significantly increased folic acid intraerythrocytary blood levels. Red cell folate increased from 150.49 ± 31.17 ng/ml to 184.21 ± 35.53 ng/ml (phttp://www.insp.mx/salud/index.html</a

    Bioinformatic Analysis of Gene Variants from Gastroschisis Recurrence Identifies Multiple Novel Pathogenetic Pathways: Implication for the Closure of the Ventral Body Wall

    No full text
    We investigated whether likely pathogenic variants co-segregating with gastroschisis through a family-based approach using bioinformatic analyses were implicated in body wall closure. Gene Ontology (GO)/Panther functional enrichment and protein-protein interaction analysis by String identified several biological networks of highly connected genes in UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, AOX1, NOTCH1, HIST1H2BB, RPS3, THBS1, ADCY9, and FGFR4. SVS&#8722;PhoRank identified a dominant model in OR10G4 (also as heterozygous de novo), ITIH3, PLEKHG4B, SLC9A3, ITGA2, AOX1, and ALPP, including a recessive model in UGT1A7, UGT1A6, PER2, PTPRD, and UGT1A3. A heterozygous compound model was observed in CDYL, KDM5A, RASGRP1, MYBPC2, PDE4DIP, F5, OBSCN, and UGT1A. These genes were implicated in pathogenetic pathways involving the following GO related categories: xenobiotic, regulation of metabolic process, regulation of cell adhesion, regulation of gene expression, inflammatory response, regulation of vascular development, keratinization, left-right symmetry, epigenetic, ubiquitination, and regulation of protein synthesis. Multiple background modifiers interacting with disease-relevant pathways may regulate gastroschisis susceptibility. Based in our findings and considering the plausibility of the biological pattern of mechanisms and gene network modeling, we suggest that the gastroschisis developmental process may be the consequence of several well-orchestrated biological and molecular mechanisms which could be interacting with gastroschisis predispositions within the first ten weeks of development

    Whole exome sequencing identifies multiple novel candidate genes in familial gastroschisis

    No full text
    Abstract Background Genetic association studies for gastroschisis have highlighted several candidate variants. However, genetic basis in gastroschisis from noninvestigated heritable factors could provide new insights into the human biology for this birth defect. We aim to identify novel gastroschisis susceptibility variants by employing whole exome sequencing (WES) in a Mexican family with recurrence of gastroschisis. Methods We employed WES in two affected half‐sisters with gastroschisis, mother, and father of the proband. Additionally, functional bioinformatics analysis was based on SVS–PhoRank and Ensembl–Variant Effect Predictor. The latter assessed the potentially deleterious effects (high, moderate, low, or modifier impact) from exome variants based on SIFT, PolyPhen, dbNSFP, Condel, LoFtool, MaxEntScan, and BLOSUM62 algorithms. The analysis was based on the Human Genome annotation, GRCh37/hg19. Candidate genes were prioritized and manually curated based on significant phenotypic relevance (SVS–PhoRank) and functional properties (Ensembl–Variant Effect Predictor). Functional enrichment analysis was performed using ToppGene Suite, including a manual curation of significant Gene Ontology (GO) biological processes from functional similarity analysis of candidate genes. Results No single gene‐disrupting variant was identified. Instead, 428 heterozygous variations were identified for which SPATA17, PDE4DIP, CFAP65, ALPP, ZNF717, OR4C3, MAP2K3, TLR8, and UBE2NL were predicted as high impact in both cases, mother, and father of the proband. PLOD1, COL6A3, FGFRL1, HHIP, SGCD, RAPGEF1, PKD1, ZFHX3, BCAS3, EVPL, CEACAM5, and KLK14 were segregated among both cases and mother. Multiple interacting background modifiers may regulate gastroschisis susceptibility. These candidate genes highlight a role for development of blood vessel, circulatory system, muscle structure, epithelium, and epidermis, regulation of cell junction assembly, biological/cell adhesion, detection/response to endogenous stimulus, regulation of cytokine biosynthetic process, response to growth factor, postreplication repair/protein K63‐linked ubiquitination, protein‐containing complex assembly, and regulation of transcription DNA‐templated. Conclusion Considering the likely gene‐disrupting prediction results and similar biological pattern of mechanisms, we propose a joint “multifactorial model” in gastroschisis pathogenesis

    Association of the polymorphism 12109g>A from the gene as a risk factor for preterm birth

    No full text
    Introduction: Preterm birth is the most important cause of neonatal mortality and morbidity. It is a multifactorial disease with different etiologies, including genetic factors. Genetic variability is represented by single nucleotide polymorphisms (SNPs) in genes of proteins involved in the contractile activity. We determine the association between SNP 12109G> A in REN associated with preterm birth and premature rupture of membrane. Materials and methods: A study of cases ( N =112, 22–36 weeks of gestation; mean: 31, 95% confidence interval 30.7–32.2) and controls ( N =66; 38–40 weeks of gestation from the last menstrual period; mean: 39.8, 95% confidence interval 38.9–39.4) was performed. Genomic DNA was isolated in all patients from peripheral blood. The SNP 12109G> A ( Mbo I) in REN was typified by PCR-restriction fragment length polymorphism. Results: A significant difference in the case group for the SNP 12109G>A was observed. The A allele was increased in women with preterm birth (81% cases vs . 15% control, p A has odds ratio 6.62 (95% confidence interval 3.14–14.15), which means a high risk of preterm birth/premature rupture of membrane in presence of allele A, both in homozygotes and in heterozygotes. Conclusion: Allelic frequency of A of SNP 12109G>A was higher in women with preterm birth than in women with normal vaginal delivery and could be considered a risk factor

    Reference values for amino acids and acylcarnitines in peripheral blood in Quarter horses and American Miniature horses

    Get PDF
    Abstract Background Free amino acids and acylcarnitines circulating in the blood can be used for diagnosis for metabolic illness and imbalances. To date, the normal reference ranges of amino acids and acylcarnitines in horse peripheral blood have not been established. In this study, the concentrations of 12 amino acids and 26 acylcarnitines were determined by tandem mass spectrometry in complete blood from 100 healthy horses (50 Quarter horses (QH) [23 males and 27 females] and 50 American Miniature horses (AMH) [15 males and 35 females]) with no signs of metabolic disease. The means and standard deviations were determined and data statistically analyzed. Findings Concentrations of short, medium, and long chain acylcarnitines were significantly higher in male AMH than in male QH. The concentrations of the amino acids alanine, arginine, glycine, proline (glycogenic), and leucine (ketogenic) were higher in the QH than in the AMH. Female AMH had higher concentrations of propionylcarnitine, leucine, proline, arginine, and ornithine than female QH. Conclusions Normal reference ranges of amino acids and acylcarnitines were established for AMH and QH. Significant differences were found in concentration of these compounds between breeds and gender
    corecore