24 research outputs found
The use of innovative scaffolds in the development of corneal stroma-derived stem cell therapies for future corneal regeneration strategies [Abstract]
The use of innovative scaffolds in the development of corneal stroma-derived stem cell therapies for future corneal regeneration strategies [Abstract
Distinct genital tract HIV-specific antibody profiles associated with tenofovir gel
The impact of topical antiretrovirals for pre-exposure prophylaxis on humoral responses following HIV infection is unknown. Using a binding antibody multiplex assay, we investigated HIV-specific IgG and IgA responses to envelope glycoproteins, p24 Gag and p66, in the genital tract (GT) and plasma following HIV acquisition in women assigned to tenofovir gel (n=24) and placebo gel (n=24) in the CAPRISA 004 microbicide trial to assess if this topical antiretroviral had an impact on mucosal and systemic antibody responses. Linear mixed effect modeling and partial least squares discriminant analysis was used to identify multivariate antibody signatures associated with tenofovir use. There were significantly higher response rates to gp120 Env (P=0.03), p24 (P=0.002), and p66 (P=0.009) in plasma and GT in women assigned to tenofovir than placebo gel at multiple time points post infection. Notably, p66 IgA titers in the GT and plasma were significantly higher in the tenofovir compared with the placebo arm (P<0.05). Plasma titers for 9 of the 10 HIV-IgG specificities predicted GT levels. Taken together, these data suggest that humoral immune responses are increased in blood and GT of individuals who acquire HIV infection in the presence of tenofovir gel.United States. National Institutes of Health (AI51794)United States. National Institutes of Health (AI104387)United States. National Institutes of Health (AI115981)United States. National Institutes of Health (AI116086)United States. Agency for International Development (GP00-08-00005-00 subproject agreement PPA-09-046
Trained immunity induction by the inactivated mucosal vaccine MV130 protects against experimental viral respiratory infections.
MV130 is an inactivated polybacterial mucosal vaccine that confers protection to patients against recurrent respiratory infections, including those of viral etiology. However, its mechanism of action remains poorly understood. Here, we find that intranasal prophylaxis with MV130 modulates the lung immune landscape and provides long-term heterologous protection against viral respiratory infections in mice. Intranasal administration of MV130 provides protection against systemic candidiasis in wild-type and Rag1-deficient mice lacking functional lymphocytes, indicative of innate immune-mediated protection. Moreover, pharmacological inhibition of trained immunity with metformin abrogates the protection conferred by MV130 against influenza A virus respiratory infection. MV130 induces reprogramming of both mouse bone marrow progenitor cells and in vitro human monocytes, promoting an enhanced cytokine production that relies on a metabolic shift. Our results unveil that the mucosal administration of a fully inactivated bacterial vaccine provides protection against viral infections by a mechanism associated with the induction of trained immunity.We are grateful to members of the D.S. laboratory for discussions and critical
reading of the manuscript. We thank the CNIC facilities and personnel for
assistance. P.B. is funded by grant BES-2014-069933 (‘‘Ayudas para Contratos Predoctorales para la Formacio´ n de Doctores 2014’’) from the Spanish
Ministry of Economy, Industry and Competitiveness (MINECO). L.C. was a
recipient of a European Respiratory Society Fellowship (RESPIRE2-2013-
3708). G.D. is supported by a European Molecular Biology Organization
Long-term Fellowship (ALTF 379-2019). This project has received funding
from the European Union’s Horizon 2020 research and innovation programme
under the Marie Sk1odowska-Curie grant agreement No. 892965. Work in the
D.S. laboratory is funded by the CNIC; by the European Research Council
(ERC-2016-consolidator grant 725091); by the European Commission
(635122-PROCROP H2020); by Ministerio de Ciencia e Innovacio´ n (MICINN),
Agencia Estatal de Investigacio´ n (AEI), and Fondo Europeo de Desarrollo
Regional (FEDER) (SAF2016-79040-R); by AEI (PID2019-108157RB); by Comunidad de Madrid (B2017/BMD-3733 Immunothercan-CM); by FIS-Instituto
de Salud Carlos III, MICINN and FEDER (RD16/0015/0018-REEM); by a collaboration agreement with Inmunotek; by Atresmedia (Constantes y Vitales prize); by Fundacio´ La Marato´ de TV3 (201723); and by Fondo Solidario Juntos
(Banco Santander). The CNIC is supported by the Instituto de Salud Carlos
III, the MICINN, and the Pro CNIC Foundation.S
Increased levels of inflammatory cytokines in the female reproductive tract are associated with altered expression of proteases, mucosal barrier proteins, and an influx of HIV-susceptible target cells.
CAPRISA, 2016.Abstract available in pdf
Distinct genital tract HIV-specific antibody profiles associated with Tenofovir gel.
CAPRISA, 2016.Abstract available in PDF file
Conidiation Color Mutants of Aspergillus fumigatus Are Highly Pathogenic to the Heterologous Insect Host Galleria mellonella
The greater wax moth Galleria mellonella has been widely used as
a heterologous host for a number of fungal pathogens including Candida
albicans and Cryptococcus neoformans. A positive
correlation in pathogenicity of these yeasts in this insect model and animal
models has been observed. However, very few studies have evaluated the
possibility of applying this heterologous insect model to investigate virulence
traits of the filamentous fungal pathogen Aspergillus
fumigatus, the leading cause of invasive aspergillosis. Here, we have
examined the impact of mutations in genes involved in melanin biosynthesis on
the pathogenicity of A. fumigatus in the G.
mellonella model. Melanization in A. fumigatus confers
bluish-grey color to conidia and is a known virulence factor in mammal models.
Surprisingly, conidial color mutants in B5233 background that have deletions in
the defined six-gene cluster required for DHN-melanin biosynthesis caused
enhanced insect mortality compared to the parent strain. To further examine and
confirm the relationship between melanization defects and enhanced virulence in
the wax moth model, we performed random insertional mutagenesis in the Af293
genetic background to isolate mutants producing altered conidia colors. Strains
producing conidia of previously identified colors and of novel colors were
isolated. Interestingly, these color mutants displayed a higher level of
pathogenicity in the insect model compared to the wild type. Although some of
the more virulent color mutants showed increased resistance to hydrogen
peroxide, overall phenotypic characterizations including secondary metabolite
production, metalloproteinase activity, and germination rate did not reveal a
general mechanism accountable for the enhanced virulence of these color mutants
observed in the insect model. Our observations indicate instead, that
exacerbated immune response of the wax moth induced by increased exposure of
PAMPs (pathogen-associated molecular patterns) may cause self-damage that
results in increased mortality of larvae infected with the color mutants. The
current study underscores the limitations of using this insect model for
inferring the pathogenic potential of A. fumigatus strains in
mammals, but also points to the importance of understanding the innate immunity
of the insect host in providing insights into the pathogenicity level of
different fungal strains in this model. Additionally, our observations that
melanization defective color mutants demonstrate increased virulence in the
insect wax moth, suggest the potential of using melanization defective mutants
of native insect fungal pathogens in the biological control of insect
populations
Global assessment of marine plastic exposure risk for oceanic birds
Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species
Global assessment of marine plastic exposure risk for oceanic birds
Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species
Global assessment of marine plastic exposure risk for oceanic birds
Plastic pollution is distributed patchily around the world's oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species.B.L.C., C.H., and A.M. were funded by the Cambridge Conservation Initiative’s Collaborative Fund sponsored by the Prince Albert II of Monaco Foundation. E.J.P. was supported by the Natural Environment Research Council C-CLEAR doctoral training programme (Grant no. NE/S007164/1). We are grateful to all those who assisted with the collection and curation of tracking data. Further details are provided in the Supplementary Acknowledgements. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.Peer reviewe