
Distinct genital tract HIV-specific antibody profiles associated 
with tenofovir gel

D Archary#1, KE Seaton#2, JS Passmore1,3,4, L Werner1, A Deal2, LJ Dunphy5, KB Arnold5, 
NL Yates2, DA Lauffenburger5, P Bergin6, LJ Liebenberg1, N Samsunder1, MW Mureithi7, M 
Altfeld8, N Garrett1, Q Abdool Karim1,9, SS Abdool Karim1,9, L Morris1,4, and GD 
Tomaras2,10

1Centre for the AIDS Program of Research in South Africa, University of KwaZulu-Natal, Durban, 
South Africa.

2Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA.

3Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, 
South Africa.

4National Institute for Communicable Diseases of the National Health Laboratory Services, 
Johannesburg, South Africa.

5Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, 
Massachusetts, USA.

6Imperial College, International AIDS Vaccine Initiative Core Immune Monitoring Laboratory, 
London, UK.

7KAVI Institute of Clinical Research, School of Medicine, College of Health Sciences, University of 
Nairobi, Nairobi, Kenya

8Heinrich-Pette Institut, Leibniz Institute for Experimental Virology, University of Hamburg, 
Hamburg, Germany.

9Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, 
NY, USA.

10Departments of Surgery, Immunology and Molecular Genetics and Microbiology, Duke 
University, Durham, North Carolina, USA.

# These authors contributed equally to this work.

Abstract

The impact of topical antiretrovirals for pre-exposure prophylaxis on humoral responses following 

HIV infection is unknown. Using a binding antibody multiplex assay, we investigated HIV-specific 

IgG and IgA responses to envelope glycoproteins, p24 Gag and p66 in the genital tract and plasma 
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following HIV acquisition in women assigned to tenofovir gel (n=24) and placebo gel (n=24) in 

the CAPRISA 004 microbicide trial to assess if this topical antiretroviral had an impact on 

mucosal and systemic antibody responses. Linear mixed effect modeling and partial least squares 

discriminant analysis was used to identify multivariate antibody signatures associated with 

tenofovir use. There were significantly higher response rates to gp120 Env (p=0.03), p24 

(p=0.002) and p66 (p=0.009) in plasma and genital tract (GT) in women assigned to tenofovir than 

placebo gel at multiple time-points post-infection. Notably, p66 IgA titres in the GT and plasma 

were significantly higher in the tenofovir compared to the placebo arm (p<0.05). Plasma titres for 

9 of the ten HIV-IgG specificities predicted genital tract levels. Taken together, these data suggest 

that humoral immune responses are increased in blood and GT of individuals who acquire HIV 

infection in the presence of tenofovir gel.
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Introduction

Several recent HIV prevention trials have tested the efficacy of tenofovir containing pre-

exposure prophylaxis (PrEP) regimens in oral 
1–3

 or topical form
4
, with protective effects 

ranging from 0%-86%
1–6

. While poor adherence to PrEP has been identified as a major 

factor limiting efficacy in these trials, the observed disparity in protection urges further 

investigation into possible biological mechanisms associated with no to incomplete 

protection. Preclinical studies in non-human primates (NHPs) and in women in the 

CAPRISA 004 clinical trial have suggested that exposure to PrEP preserves the magnitude 

of HIV-1-specific CD4 cell responses generated in those experiencing breakthrough HIV 

infections
7,8. Investigations of humoral immunity following breakthrough infections showed 

slower development of HIV-specific antibody avidity
9,10

. Additionally decreased titres were 

shown in HIV-infected individuals on antiretroviral treatment (ART)
11–13

. The effect of 

topical tenofovir on the magnitude and kinetics of mucosal and systemic antibody responses 

remains an important gap in our knowledge.

Antibody responses at the portal of HIV entry, the mucosa of the lower female reproductive 

tract, are thought to be a key mechanism to block virus dissemination from the GT and to 

prevent or delay replication and establishment of a productive infection
14–16

. Vaccine-

induced, locally produced gp41 SIV Env IgG in the female macaque GT correlated with 

protection in animals receiving a high-dose, intra-vaginal challenge 20 weeks post-

vaccination
16,17

. Additionally, in highly-exposed persistently seronegative (HESN) women, 

the presence of mucosal HIV-specific antibodies has been suggested to correlate with 

protection
18–21

. We found gp120 specific IgAs but no HIV-1 specific IgG responses in GT 

fluid in HESN women recruited into the HPTN 035 microbicide trial
21

. In HIV-infected 

women, we showed that both gp41- and gp120-specific IgA and IgG were detected in the 

GT
21,22

.
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Given these findings, a major goal of HIV prevention research is to induce protective 

immunity at the genital mucosa. Defining the properties of the earliest antibody responses at 

the vaginal mucosa following HIV transmission will enable a better understanding of the 

potential role of tenofovir in modulating protective antibody responses in the female GT. We 

hypothesised that higher titre antibodies and increased breadth of HIV-specific antibody 

responses would be seen in plasma as well as in the GT of women enrolled in the 

CAPRISA004 trial, because of the likely exposure to HIV in the GT in the presence of 

tenofovir. This is supported by previous observations of preserved HIV-specific CD4 cell 

responses in the tenofovir compared to the placebo arm
8
. We compared HIV-1 antibody 

response rates and titres of IgG and IgA responses in plasma and cervicovaginal lavages 

(CVLs) to a panel of ten HIV-specific antibody epitopes. Women in the tenofovir arm could 

be differentiated from the placebo arm by distinct HIV-1 specific antibody signatures, 

including plasma and CVL IgA responses to p66 during early HIV-1 infection. Elucidation 

of the effects of microbicides on HIV-1 antibody responses and evolution in those who 

become infected will assist in the design and development of future combination prevention 

strategies.

Methods

Study population and specimen collection

The University of KwaZulu-Natal's Biomedical Research Ethics Committee (E111/06), 

Family Health International's Protection of Human Subjects Committee (#9946) and the 

South African Medicines Control Council (#20060835) approved the CAPRISA 004 

microbicide gel trial (Clinical Trials Number 00441298). Results of the primary analyses 

have been published previously
4
. Written informed consent was obtained from all 

participants. This study was approved by the Institutional Review Board of Duke University 

and the University of KwaZulu-Natal's Biomedical Research Ethics Committee.

Forty eight women who seroconverted during the CAPRISA 004 1% tenofovir microbicide 

gel trial were included in this study
4
. Of these, 24/48 were from the tenofovir arm (cases) 

and 24/48 were from the placebo arm (controls), with cases and controls matched according 

to viral loads and CD4 T cell counts at six months post-infection. Recent HIV-1 infection 

was diagnosed on the basis of two HIV-1 rapid antibody tests and PCR (Roche Amplicor 

v1.5, New Jersey, USA), and confirmed by enzyme immunoassay. Women were enrolled 

within 3 months of infection and the timing of infection was estimated either as the midpoint 

between the last HIV-1-negative test and the first antibody-positive test, or as 14 days before 

the first PCR positive test for antibody negative participants. CD4 T cell counts were 

assessed using a FACSCalibur flow cytometer, and viral loads were measured using a Cobas 

Amplicor HIV-1 Monitor Test, v1.5 (Roche Diagnostics, New Jersey, USA). HIV-infected 

women were followed for a median of 36 months after enrolment (range 11.5 - 53.5 

months), and plasma and CVL samples from 3, 6, 12, 18, 24 and >30 months post-infection 

were included in this study. All women were naïve to ART for the duration of this sub-study. 

Plasma collected in EDTA was stored at −80°C until use. CVL was collected from each 

woman at each study visit under speculum examination using 10mL sterile saline according 

to the method described by Bebell et al.
23

.
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HIV-specific binding antibody assay

HIV-specific antibodies against HIV-1 specific Env and Gag proteins were measured in 

plasma (1:50; 1:10,000 and 1:100,000 dilutions) and CVL (1:3 and 1:10 dilutions) using a 

customized HIV-1 binding antibody multiplex assay (BAMA)
22,24–27

. IgG was depleted 

prior to performing HIV-1 specific IgA assays.
22

 The antigen panel included the following 

Env proteins: gp70_B.CaseA_V1_V2 (gp 70 V1V2), Transmitted Founder Clade C gp140 

(1086 C.gp140)
28,29

, C.con.env03 140 CF (Consensus Clade C Env gp140), Con6 gp120/B 

(Consensus Group M gp120), and Con S gp140 CFI (Group M consensus gp140 Env), and 

were provided by Drs. Haynes and Liao, Duke Human Vaccine Institute, USA
30–32

. 

Commercially available reagents included: p24 Gag and p66 RT (Protein Sciences), and 

gp41 (ImmunoDiagnostics). Consensus Clade B gp41 immunodominant (ID) epitope in 

tetramer form was kindly provided by Dr. M.A. Moody
33

, Duke Human Vaccine Institute, 

USA). The sequences of the immunodominant epitope and the V3 peptide are as follows: 

(Biotin CRVLAVERYLRDQQLLGIWGCSGKLICTTAVPWNASWSNKSLNKI). Bio-V3.C 

(Clade C V3 linear epitope, Biotin- CRVLAVERYLRDQQLLGIWGCSGKLICTTAV from 

JPT Peptide Technologies, Berlin, Germany).

All assays were run under good clinical laboratory practice (GCLP)-compliant conditions, 

including tracking of positive controls by Levey-Jennings charts. Positivity cut-offs for 

binding antibody responses in plasma for antibody-antigen pairs were pre-determined from 

30 HIV-1 negative individuals (mean fluorescent intensity (MFI) + 3 standard deviations). 

Positive controls included titrations of HIV-1+ purified IgG (HIVIG), CH58 IgG mAb and 

7B2 IgG or IgA mAbs (mAbs from Drs. Liao and Haynes).

Total immunoglobulin quantification and HIV-specific activity in CVL

Total IgG and IgA in CVL were quantified using a 7-plex BioRad Human Isotyping kit on 

the Bio-Plex 200 multiplex system (Bio-Rad, Hercules, CA), according to the manufacturer's 

instructions. Ig concentrations were determined by 4-PL logistic regression using the 

Bioplex Manager 6.0 software (Bio-Rad, Hercules, CA). HIV-1 specific activity (SA) was 

defined as the antigen-specific MFI (adjusted for dilution factor) divided by the total 

immunoglobulin amount (antigen-specific MFI*dilution/ng/ml total IgG or IgA) in order to 

adjust for individual variation in total Ig recovered when performing CVL. HIV-1 antibody 

responses were considered positive if they met both antigen-specific positivity criteria and 

specific activity criteria (mean SA + 3 standard deviations) from a set of 30 seronegative 

CVLs. Samples that did not meet the positivity cutoff for specific activity were set to 1/10 of 

the specific activity cut-off for statistical analysis and visualization purposes.

Statistical analysis

Fisher's exact test was used to compare the proportion of detectable IgGs at a single time 

point between the two arms. Linear mixed models were used to assess the impact of 

CAPRISA 004 gel arm assignment on both plasma and GT IgG and IgA measurements post 

HIV infection. Linear mixed models were also used to measure the effect of the plasma IgG 

levels on that of the GT at the same time point, and the effect of CD4 cells and HIV-1 viral 

load on IgG levels within each arm. β-coefficients were reported as per 50 cells/μl increase 

in CD4 cells and per 1 log increase in plasma viral load. Odds ratios were determined by 
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fitting a generalized estimating equation (GEE) model with a binomial distribution. IgG 

values were log transformed to ensure normality and all p<0.05 were considered statistically 

significant. The false discovery rate method (Benjamini Hochberg) was used to adjust p 

values for multiple comparisons to prevent a Type 1 error and circumvents over estimating 

statistical significance. Statistical analysis was performed using SAS version 9.3 (SAS 

Institute Inc., Cary).

Identification of antibody signatures with partial least squares discriminant analysis

Partial least squares discriminant analysis (PLSDA) and the LASSO method for regression 

shrinkage and selection
34,35

 were used to identify antibody signatures across time-points, 

and in plasma and CVL compartments, that best differentiated women in the placebo arm 

from those in the tenofovir arm. Due to missing measurements for some time-points, only 

measurements made at 6 and 12 months were included in this analysis. After eliminating 

individuals with missing measurements, 31/48 women were included (18 placebo; 13 

tenofovir). All analyses were performed using Matlab software (MathWorks, Natick, MA) 

and PLS_Toolbox for Matlab (Eigenvector Research Incorporated, Wenatchee, WA). 

LASSO was implemented using K-fold cross-validation to identify the model with the 

lowest possible mean squared error for prediction and minimum set of antibodies. PLSDA 

was used to evaluate the classification accuracy of the selected group of antibodies and was 

compared to classification obtained from individual measurements alone. Loading values 

indicate the degree of separation of antibody measurements between the tenofovir and 

placebo arms. Positive or negative loading values on latent variables (LV) identified by the 

PLSDA model were used to indicate antibody signatures that best separate tenofovir and 

placebo arms. The more positive or the more negative a loading on LVs in the model, the 

more strongly that feature contributes to the distinguishing profile. Score plots were used to 

illustrate the ability of these signatures to distinguish tenofovir and placebo groups. Cross-

validation was performed by repeatedly excluding contiguous subsets of data (5-6 data 

points per set) during model calibration. Excluded data was then used to test model 

predictions. Raw data was normalized with mean centering and variance scaling prior to 

analysis.

Results

Study Participants

Overall, 58.3% (28/48) of the women were from rural areas in KwaZulu-Natal, with only 

54.2% (26/48) completing high school and most in stable partnerships (Table 1). The median 

age of the women was 23 years, with a median blood CD4 count of 498 cells/ul during acute 

HIV infection and plasma viral load of 59,050 copies/ml. No differences were found 

between the two arms for age, education, hormonal contraceptive use, marital status, number 

of sexual partners or condom use. Women included in the study were matched for CD4 T 

cell counts during acute HIV infection since differences in CD4 helper function may have 

confounded analysis of HIV-antibody responses. There were no differences between the 

arms for either CD4 cells or viral loads over time (data not shown). After matching, the 

earliest samples collected from women in this sub-study in the TFV arm, had a significantly 
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longer time from enrolment to acquisition of HIV-1 infection [12.8 months (IQR- 6.6-16.6 

months)] than women in placebo arm [7.4 months (IQR 3.3-10.6 months), p=0.02].

High IgG response rates to multiple HIV antigens in the genital tract

We investigated mucosal IgG and IgA antibody responses (indicated as the number of 

women responding to any HIV antigen) in the female GT for potential differences in 

tenofovir vs placebo-exposed women. In the GT, IgG rather than IgA responses, were more 

readily detected (Fig. 1 and data not shown). The majority of women had GT IgG responses 

to multiple HIV-1 antigens, compared to more restricted GT IgA responses (Fig. 1 and 

Suppl. Fig. 1). All of the women had detectable GT IgG responses to p24, p66, gp140 and 

gp41 (Figs. 1D-E and data not shown). In contrast, GT IgG responses to gp70 V1V2, 

Consensus Group M gp120, and V3 antigens were seen less frequently and emerged only 

later after infection (Figs. 1A, 1B and 1C). There was no major difference noted between the 

study arms except for the rates of GT IgG responses to Clade C V3 linear epitopes were 1.7-

times higher in the tenofovir (88.2%) than placebo arm (52.4%) at 12 months post-infection 

(p=0.03, Fig. 1C).

While GT IgA responses to p66 and p24 were detected, gp70 V1V2 and Consensus Group 

M gp120 IgA responses were not detected (Fig. 1F-G and 1I-J). Women in the tenofovir arm 

were 3.6-times more likely to have p66 IgA responses than those in the placebo arm (95% 

CI 1.38 - 9.61; p=0.009; Fig. 1J). No further differences in GT IgA response rates were 

found between the arms.

Higher prevalence of plasma IgA responses detected in tenofovir compared to placebo 
arm

Plasma HIV-1 specific IgG and IgA response rates, indicating the number of women 

responding to any HIV antigen, were compared to determine whether differences existed 

between antibody emergence and specificity in those assigned to tenofovir or placebo (Fig. 

2). The majority of women had HIV-1 specific IgG responses in plasma that did not differ by 

treatment arm (Fig. 2A-2E). P24 and p66 were the dominant plasma HIV-1 specific IgG 

responses in the first three months after infection (Fig. 2D and 2E), with 100% of women in 

both arms recognizing these antigens. Consensus Group M gp120 IgG responses in plasma 

emerged more slowly than p24 and p66 responses, with only 35% of women being IgG 

positive for gp120 at 3 months and 57% being positive at 6 months post-infection (Fig. 2B). 

Plasma IgG response rates to gp70 V1V2 were generally high throughout the course of 

infection, ranging from 73-100% response rate in both arms (Fig. 2A). Notably, HIV-

infected women from the tenofovir arm had ~4.2-fold higher response rates to gp70 V1V2 

than those in the placebo arm (OR=0.8-21.1 95% CI, p=0.08), although this was not 

significant. In addition, women in the tenofovir arm were 1.8-times more likely to have a 

Consensus Group M gp120-IgA response from 6-12 months (95% CI 1.06 - 3.11, p=0.08) 

(Fig. 2G). Plasma IgA response rates to p24 (OR=3.64; 95% CI 1.49 - 6.38; p=0.002) and 

p66 (OR=2.92; 95% CI 1.68 – 5.07; p=0.0001) were also significantly higher in the 

tenofovir than in the placebo arm (Fig. 2I and 2J).
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Higher titres of IgG and IgA in plasma and GT in women in the tenofovir arm

The magnitude of HIV-specific antibody responses, indicative of titres, in plasma and CVL 

of women in the tenofovir arm were then compared to women in the placebo arm. Similar 

titres of plasma HIV-specific IgGs were noted in the tenofovir and placebo arms for 9/10 of 

the antigens tested (Suppl. Fig. 2). Only IgG titres directed against gp70 V1V2 were 

significantly higher in plasma from women in tenofovir arm compared to women in the 

placebo arm in the first six months post-infection (p=0.009; adjusted and data not shown). 

Plasma IgG responses were generally of similar magnitude between the placebo arm and 

tenofovir arm for most HIV-1 antigens (Fig. 3A; Suppl. Fig. 2). However, mean titres of 

plasma Consensus Group M gp120 (p=0.05), p24 and p66 IgA responses were higher in the 

tenofovir treatment arm than the placebo arm. Plasma p24 IgA titres were significantly 

higher over time and at >6 months post infection in the tenofovir-treated compared to the 

placebo arm (p=0.016 and p=0.012 respectively- Suppl. Fig. 3) and p66 IgA titres at 6 

months trended higher (p=0.08) and was significantly different at 12 months (p=0.004) post 

HIV-infection (Fig. 3B, Suppl. Fig. 3), although not after adjusting for multiple 

comparisons. In addition, increased titres of p66 IgGs were found in CVL from tenofovir-

treated women compared to those in the placebo arm 12 months (p=0.04) post-infection 

(Fig. 3C; Suppl. Fig. 4). This trend was also noted for IgA responses in the CVL (Suppl. Fig. 

5); although overall IgA response rates and magnitudes were lower in CVL and thus 

differences could not be compared between groups.

GT and plasma p66 IgA responses differentiated women in the tenofovir arm

A multivariate approach that integrates antibody measurements over time and takes tissue 

compartment into account was used to determine if there were any unique antibody 

signatures associated with tenofovir use. A feature reduction method (LASSO) and PLSDA 

was used together to identify the minimum linear combination of antibody specificities that 

differentiated tenofovir and placebo groups, using 6 and 12 month post-infection time-

points. This approach has been used previously to identify molecular signatures associated 

with disease status
36

 or cellular behaviours
37

. LASSO identified a subset of 8 HIV-1 

antibody specificities that best differentiated tenofovir and placebo groups, with 77% cross-

validation accuracy and 87% calibration accuracy (Figs. 4A and B). Five of these 8 

specificities were strongly and positively associated with the tenofovir arm (negatively 

loaded on LV1; including plasma p66 IgA at months 6 and 12, CVL p66 IgA at month 6, 

plasma p66 IgG at month 12, and CVL gp41 IgA at month 12), while 3/8 were negatively 

associated with the tenofovir arm (positively loaded on LV1; including plasma Clade C V3 

linear epitope IgA at month 12, p24 IgG at month 6 and Consensus Clade C Env gp140 IgG 

at month 12) (Fig. 4B). Confirmation of these identified signatures was done by generating 

1,000 additional PLSDA models, each with 8 different combinations of antibody 

specificities selected from the remaining (non-LASSO) measurements. This analysis 

suggested that the LASSO-selected signature was significantly better for differentiating 

tenofovir and placebo groups (p<0.01), as both calibration accuracy and cross-validation 

accuracy were in the 99th percentile rank compared to other models (Suppl. Figs. 6A and B). 

The identified signature suggested spatio-temporal relationships between HIV-specific 

antibody specificities that differentiated women in the tenofovir from placebo arm. Early and 

late antibody relationships between p66 in plasma and CVL contributed most notably to this 
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signature, with plasma p66 IgA (month 6 and 12), CVL p66 IgA and IgG (month 6 and 12, 

respectively) strongly negatively loaded onto LV1, and strongly associated with the tenofovir 

arm [the more negative the LV1 loading, the more strong the association is for the tenofovir 

arm] (Fig. 4B). This suggested that women in the tenofovir group were best characterized by 

elevated p66 IgA responses over time in both plasma and CVL compared to the placebo 

group. In addition, lower IgA responses to Clade C V3 linear epitope (month 12), IgG to p24 

(month 6), and IgG to Consensus Clade C Env gp140 (month 12), all positively loaded on 

LV1 and detected in plasma, best characterized women in the tenofovir arm from women in 

the placebo group [the more positive the LV1 loading, the stronger the association is for the 

placebo arm]. These results support findings from the univariate analysis, and provide 

complementary insight into possible integrated relationships between different antibody 

specificities and provide further evidence of a detectable tenofovir effect on humoral 

immunity in women subsequent to seroconversion.

Compartmental associations for Gag p24 IgGs from women in the tenofovir arm

To determine whether HIV-1 specific mucosal antibodies were locally-produced or 

predominantly transudated from plasma, we compared the titres of HIV-specific IgG and 

IgA in plasma to those in the CVL. Among women assigned to the tenofovir arm, the plasma 

p24 IgG responses correlated significantly to those detected in matching CVL, at several 

time-points post-infection [6 months (β coefficient= 1.4, p<0.0001) until >30 months (β 

coefficient=1.3, p<0.0001)] (Fig. 5A). In addition, Consensus Clade C Env gp140 and 

Group M consensus gp140 Env IgG responses at 6 months post-infection in the tenofovir 

group correlated significantly between the compartments (Fig. 5A). P24 IgG responses in 

the placebo group showed more restricted and less strong associations between plasma and 

CVL (Fig. 5B).

No correlation was seen between IgA responses in the plasma and CVL at any time-point for 

either arm, which were detected at lower titres in both compartments (Figs. 5C and D). This 

suggests that HIV-1 specific IgAs are predominantly locally produced in the female GT 

although absolute antibody titres may have influenced this poor concordance.

Plasma viral load correlated with HIV-specific IgG and IgA responses

We evaluated whether plasma viral loads were associated with titres of HIV-specific IgGs 

and IgAs in the plasma. HIV-specific plasma IgG titres correlated significantly with viral 

load (Table 2). In the tenofovir arm, titres of IgG directed against 1086 C.gp140, Consensus 

Clade B gp41 ID epitope, and gp41 correlated with plasma viral load, although not after 

adjusting for multiple comparisons. For HIV-1 specific IgA responses (Table 2), plasma viral 

load correlated positively with several plasma IgA specificities from women in the placebo 

arm [clade C V3 linear epitope, Group M consensus gp140 Env, and consensus clade C 

gp140).

Similarly, we found broadly negative associations between CD4 cells and HIV-specific IgG 

responses to several antigens in women in the tenofovir arm at 6 months post-infection, 

suggesting that HIV clinical status was influencing HIV-specific antibody responses [Table 

3; for Consensus Group M gp120 (r=−0.49, p=0.02), 1086 C.gp140 IgG (r=−0.53, p=0.01), 
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Consensus Clade C Env gp140IgG (r=−0.48, p=0.02); although not significant after false 

discovery rate adjustment]. There were no associations with CD4 cells and IgG responses in 

the placebo arm.

For HIV-1 specific IgA responses, viral loads correlated positively in the placebo arm for 

8/10 of the IgA antigen specificities [Table 2; Clade C V3 Linear epitope, Group M 

consensus gp140 Env -IgG, Consensus Clade C Env gp140 remained significant after 

adjusting for false discovery rate]. Similarly, in the tenofovir arm at 6 months post-infection, 

we found a significant negative association with CD4 cells and HIV-specific IgA responses 

[Table 3; including 1086 C.gp140-IgG, Consensus Group M gp140, and Consensus Clade C 

Env gp140]. These data indicate that both IgG and IgA responses may be driven by viral 

load which can negatively impact CD4 cells. However, other factors such as characteristics 

of the transmitted virus, pre-existing immune responses, concurrent infections and host 

genetics may also contribute.

Conclusions

Women assigned to the tenofovir gel had a distinct p66 IgA signature in both the GT and 

plasma that differentiated them from those in the placebo arm following HIV-1 infection. 

The enhanced p66 IgA responses over time in both compartments with a parallel delay or 

lowering of IgA- specific V3 and IgG-specific Env gp140 responses indicates the impact of 

prior topical tenofovir on ensuing antibody responses post HIV-1 infection.

An increased frequency and magnitude of HIV-1 specific IgA responses to p66 and p24 in 

the plasma and GT were seen during the primary infection stage in the tenofovir compared 

to the placebo arm. Previous studies have shown that IgG rather than IgA are predominant in 

the type II mucosa of the lower female genital mucosa
38,39

. However, we previously 

demonstrated that altered antibody isotypes and specificities were present in CVLs of HESN 

women participating in the HPTN035 microbicide trial (randomized to either BufferGel or 

0.5% PRO2000 or placebo) compared to chronically HIV-infected women
21

. HIV-exposed-

uninfected women in this trial exhibited an increase in different types of Env-specific IgA in 

the female GT compared to a HIV-1 infected cohort. In this sub-study of the CAPRISA 004 

trial, women in the tenofovir arm had a delay of >5 months from enrolment to infection vs 

women in the placebo arm. The p66 IgA signature in plasma and GT in tenofovir-exposed 

women may be a consequence of frequent exposure to HIV during sexual intercourse, 

without productive infection because of the presence of tenofovir, similar to the enhanced 

IgA responses seen in other HESN cohorts
14,21,40

. Interestingly, prior studies have suggested 

that p66 antibodies are associated with the rate of HIV disease progression
41

, in addition to 

being associated with HIV-1 controller status
42

. Thus the role of p66 antibody in our study 

could also be a surrogate for another immune mechanism that is impacted by tenofovir use.

The significant delay in time to HIV infection in the presence of tenofovir may likely have 

played an indirect role in modulating specific antibody responses in the absence of HIV 

infection, as significant differences in p24 and p66 binding antibody response rates and 

magnitude were seen >6 months post-infection. A limitation of this study is that samples 

immediately prior to infection or during very early acute infection were not available for 
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investigation. Oral PrEP trials have shown immuno-modulatory effects of tenofovir in those 

who became infected, with effects ranging from preserved CD4 cells to lower levels of 

systemic inflammation
43

. In topical PrEP studies, Gag-specific T cell responses in the 

absence of infection has been demonstrated
7
 with use of tenofovir gel. During the acute 

stage of breakthrough infections in the CAPRISA 004 study, Laeyendecker et al. showed a 

delay in avidity maturation of specific antibody responses in women assigned to the 

tenofovir gel
9,10

. While studies showed decreased antibody titres with ARV-treatment in 

individuals already infected with HIV-1
11–13

, we found increased antibody response rates 

and magnitudes for V1-V2 IgG, p66 and p24 specific IgA and IgG during HIV-1 

breakthrough infection in individuals exposed to tenofovir before infection after controlling 

for sexually transmitted diseases. Women with breakthrough infections in the tenofovir arm 

were reported to have an episodic use of 3-4 weeks of tenofovir gel post-infection
4
. In 

addition, high levels (3.1 × 106 ng/ml) of tenofovir-diphopshate (TFV-DP) were achieved in 

the genital tract with topical application
44

. The half-life of TFV-DP (active metabolite) is 

approximately 40 days in the genital tract
45

 suggesting that the levels of TFV at mucosal 

sites were maintained for at least 6 weeks or 40 days after the last application of the 

tenofovir gel and this may explain the delay in antibody responses in the first few months 

post-infection. Our study is different from Laeyendecker et al.
10

 in that their study measured 

antibody avidity at early time-points. Here, we measured the magnitude and breadth of the 

antibody response, not the avidity, to both envelope and non-envelope HIV-1 antigens. These 

data suggest that prior tenofovir use may prime the immune system
7,8 upon exposure to 

HIV
46

, leading to increased p66 and p24 specific IgA and IgG that can distinguish patients 

with mucosally applied tenofovir during the primary stage of HIV-infection.

In the RV144 vaccine trial, plasma gp70 V1V2 binding IgGs, including V1V2 specific IgG3, 

correlated with decreased HIV-1 infection risk
25,27,47

. Whether the same specificity was 

present in the GT of uninfected vaccinees was not evaluated in the trial. Transudation of 

HIV-1 specific antibodies from the systemic circulation into secretions in the lower female 

GT has been described
48

. Many factors may affect the transudation of antibodies across the 

mucosa, including vaginal pH
49,50

, the type of antibody glycosylation
51

, and heterogeneity 

among individuals. Our data indicated that in the presence or absence of tenofovir, gp70 

V1V2 IgG were detected in the GT in a small proportion of women throughout infection 

(26% in the tenofovir and 22% in the placebo arm overall at 28-39 months), despite 100% of 

the women displaying plasma gp70 V1V2 IgG specificity (100% for both tenofovir and 

placebo at 28-39 months). This indicates that there may be differential transudation of 

certain IgG specificities which are regulated by mechanisms that are yet to be determined. 

Whether these antibodies confer protection in the GT and whether tenofovir impacts the IgG 

subclass profile 
25

, requires further study. Observations for little to no gp70 V1V2 specific 

IgA in either the plasma or CVL suggests that certain antigen specificities may be less likely 

to have a mucosal IgA response. Although we did not measure the secretory component of 

IgA in this study (another limitation of this study), our data suggests that IgA responses may 

be generated both locally in the GT and systemically. Additional studies are needed to 

determine the relative proportion of locally produced versus systemic IgA responses in the 

female GT, and whether HIV-1 specific IgA in different compartments may indeed protect or 

increase the risk for HIV-acquisition
27,52,53

. The menstrual cycle and female hormones may 
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influence the composition of mucosal IgGs and possibly IgAs. We were unable to assess this 

in the current study as all women were on some form of hormonal contraception, and stage 

of the menstrual cycle in those cycling was not recorded.

The direct relationship between plasma viral loads and the magnitude of Env-specific IgGs 

suggested that B cell immune responses may have been driven primarily through frequent 

antigen stimulation or exposure
54

. IgG responses were found to be locally produced in the 

macaque GT
17

, after SIVmac239Δnef vaccination and in response to live SIV exposure. 

Another study demonstrated that rectal Env-specific IgG responses were a key correlate of 

protection following heterologous prime boost vaccination
55

. In the gut lamina propria of 

mice, local B cell receptor editing, IgG repertoire and B cell development were shown to be 

regulated by extracellular signals from commensal microbes
56

, and the same could be true 

for the female GT
57

. The strong and significant cross-compartment correlations for most of 

the Env-specific IgGs may be reflective of local T cell specificities in the GT. To achieve 

sterilizing protection against HIV, a combination of potent polyfunctional humoral immune 

responses that reach the GT and circulating T cell-mediated immunity may be crucial. 

Whether HIV-specific antibodies in the GT would confer protection through combined direct 

neutralization and Fc-associated effector functions remains unknown
58–64

.

In summary, we identified specific alterations in the plasma and mucosal responses to HIV-1 

infection following tenofovir gel use in those women who became infected. Our analyses 

revealed an antibody signature that distinguished women in the tenofovir arm post-infection 

from those in the placebo arm. Further work is needed to evaluate whether tenofovir has a 

direct or indirect immunomodulatory role that resulted in these differences in the humoral 

response to infection. We have corroborated earlier findings that systemic HIV-1 specific 

IgG responses likely transudate into the GT
65,66

 and that the IgA responses may be locally 

produced. These findings underscore the importance of both locally produced or transduced 

antibody responses in the genital tract to prevent infection
52,53,67–69

. Information from this 

study is directly relevant to both vaccine and PrEP strategies, which aim to induce protective 

antibodies at mucosal surfaces.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank all the CAPRISA 002 Acute Infection Study participants who are continuing to make an important 
contribution to HIV research. The scientific and supportive role of the whole CAPRISA 002 study and protocol 
teams are gratefully acknowledged.

Tenofovir was provided by Gilead Sciences and the gel was manufactured and supplied for the CAPRISA 004 trial 
by CONRAD. We thank Drs. Hua-Xin Liao, M. Anthony Moody and Barton Haynes (Duke Human Vaccine 
Institute (DHVI) for HIV-1 mAb and antigen reagents and Glenn Overman (DHVI) for expert technical assistance 
in IgG depletion of plasma and CVL samples. Over the last decade, the CAPRISA 002 study team has received 
support from the National Institute of Allergy and infectious Disease (NIAID), National Institutes of Health (NIH) 
(grants # AI51794, #AI104387, #AI115981, #AI116086), from CONRAD (USAID co-operative grant 
#GP00-08-00005-00, subproject agreement # PPA-09-046), from the National Research Foundation (grant # 
67385), the Medical Research Council of South Africa, the Technology Innovation Agency, and the Columbia 
University-Southern African Fogarty AIDS International Training and Research Programme (AITRP) funded by the 
Fogarty International Center, NIH (grant # D43TW00231). DA was funded through the Medical Research Council 

Archary et al. Page 11

Mucosal Immunol. Author manuscript; available in PMC 2016 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of South Africa Self-Initiated Grant (MRC SIR), and the National Research Foundation (NRF) of South Africa 
training funds to carry out this study. This work was also supported by NIH NIAID HVTN Laboratory Center 
UM1AI068618 and NIH NIAID Duke Center for AIDS Research Immunology Core P30 AI 64518.

References

1. Grant RM, et al. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. 
N. Engl. J. Med. 2010; 363:2587–99. [PubMed: 21091279] 

2. Baeten JM, et al. Antiretroviral prophylaxis for HIV prevention in heterosexual men and women. N. 
Engl. J. Med. 2012; 367:399–410. [PubMed: 22784037] 

3. Molina, JM., et al. On Demand PrEP With Oral TDF-FTC in MSM: Results of the ANRS Ipergay 
Trial | CROI Conference.. Conf. Retroviruses Opportunistic Infect. (CROI); Seattle, Washington. 
23-26 Febr. 2015; Abstract 23LB (Seattle, Washington, 2015)

4. Abdool Karim Q, et al. Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for 
the prevention of HIV infection in women. Science. 2010; 329:1168–74. [PubMed: 20643915] 

5. Marrazzo JM, et al. Tenofovir-Based Preexposure Prophylaxis for HIV Infection among African 
Women. N. Engl. J. Med. 2015; 372:509–518. [PubMed: 25651245] 

6. McCormack, S., et al. Pragmatic Open-Label Randomised Trial of Preexposure Prophylaxis: The 
PROUD Study | CROI Conference.. Conf. Retroviruses Opportunistic Infect. (CROI); Seattle, 
Washington. 23-26 Febr. 2015; Seattle, Washington, 2015

7. Cranage M, et al. Prevention of SIV Rectal Transmission and Priming of T Cell Responses in 
Macaques after Local Pre-exposure Application of Tenofovir Gel. PLoS Medicine. 5(8):e157. doi:
10.1371/. [PubMed: 18684007] 

8. Mureithi MW, et al. Preservation HIV-1 specific IFNγ+ CD4+ T cell responses in breakthrough 
infections following exposure to Tenofovir Gel in the CAPRISA 004 microbicide trial. JAIDS J. 
Acquir. Immune Defic. Syndr. 2012; 1

9. Curtis KA, et al. Delayed Maturation of Antibody Avidity but Not Seroconversion in Rhesus 
Macaques Infected With Simian HIV During Oral Pre-Exposure Prophylaxis. J. Acquir. Immune 
Defic. Syndr. 2011; 57:355–362. [PubMed: 21637113] 

10. Laeyendecker O, et al. Antibody Maturation in Women who Acquire HIV Infection While Using 
Antiretroviral Pre-Exposure Prophylaxis. J. Infect. Dis. 2015 doi:10.1093/infdis/jiv110. 

11. Hare CB, et al. Seroreversion in subjects receiving antiretroviral therapy during acute/early HIV 
infection. Clin. Infect. Dis. 2006; 42:700–8. [PubMed: 16447118] 

12. O'Sullivan CE, et al. Epstein Barr virus and human immunodeficiency virus serological responses 
and viral burdens in HIV-infected patients treated with HAART. J. Med. Virol. 2002; 67:320–6. 
[PubMed: 12116021] 

13. Payne H, et al. Reactivity of routine HIV antibody tests in children who initiated antiretroviral 
therapy in early infancy as part of the Children with HIV Early Antiretroviral Therapy (CHER) 
trial: a retrospective analysis. Lancet Infect. Dis. doi:10.1016/S1473-3099(15)00087-0. 

14. Devito C, et al. Mucosal and plasma IgA from HIV-1-exposed uninfected individuals inhibit HIV-1 
transcytosis across human epithelial cells. J. Immunol. 2000; 165:5170–5176. [PubMed: 
11046049] 

15. Belyakov IM, Ahlers JD, Berzofsky JA. Mucosal AIDS vaccines: current status and future 
directions. Expert Rev. Vaccines. 2004; 3:S65–73. [PubMed: 15285706] 

16. Smith AJ, et al. Live simian immunodeficiency virus vaccine correlate of protection: immune 
complex-inhibitory fc receptor interactions that reduce target cell availability. J. Immunol. 2014; 
193:3126–33. [PubMed: 25143442] 

17. Li Q, et al. Live simian immunodeficiency virus vaccine correlate of protection: local antibody 
production and concentration on the path of virus entry. J. Immunol. 2014; 193:3113–25. 
[PubMed: 25135832] 

18. Tudor D, et al. HIV-1 gp41-specific monoclonal mucosal IgAs derived from highly exposed but 
IgG-seronegative individuals block HIV-1 epithelial transcytosis and neutralize CD4(+) cell 
infection: an IgA gene and functional analysis. Mucosal Immunol. 2009; 2:412–26. [PubMed: 
19587640] 

Archary et al. Page 12

Mucosal Immunol. Author manuscript; available in PMC 2016 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



19. Mazzoli S, et al. HIV specific mucosal and cellular immunity in HIV seronegative partners of HIV-
seropositive individuals. Nat. Med. 1997; 3:1250–7. [PubMed: 9359700] 

20. Kaul R, et al. Mucosal IgA in exposed, uninfected subjects: evidence for a role in protection 
against HIV infection. AIDS. 2001; 15:431–2. [PubMed: 11273233] 

21. Seaton KE, et al. HIV-1 Specific IgA Detected in Vaginal Secretions of HIV Uninfected Women 
Participating in a Microbicide Trial in Southern Africa Are Primarily Directed Toward gp120 and 
gp140 Specificities. PLoS One. 2014; 9:e101863. [PubMed: 25054205] 

22. Yates NL, et al. HIV-1 gp41 envelope IgA is frequently elicited after transmission but has an initial 
short response half-life. Mucosal Immunol. 2013; 6:692–703. [PubMed: 23299618] 

23. Bebell LM, et al. Relationship between levels of inflammatory cytokines in the genital tract and 
CD4+ cell counts in women with acute HIV-1 infection. J. Infect. Dis. 2008; 198:710–4. [PubMed: 
18643751] 

24. Tomaras GD, et al. Initial B-cell responses to transmitted human immunodeficiency virus type 1: 
virion-binding immunoglobulin M (IgM) and IgG antibodies followed by plasma anti-gp41 
antibodies with ineffective control of initial viremia. J. Virol. 2008; 82:12449–63. [PubMed: 
18842730] 

25. Yates NL, et al. Vaccine-induced Env V1-V2 IgG3 correlates with lower HIV 1 infection risk and 
declines soon after vaccination. Sci. Transl. Med. 2014; 6:228ra39.

26. Yates NL, et al. Multiple HIV-1 specific IgG3 responses decline during acute HIV 1: implications 
for detection of incident HIV infection. AIDS. 2011; 25:2089–97. [PubMed: 21832938] 

27. Haynes BF, et al. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N. Engl. J. Med. 
2012; 366:1275–86. [PubMed: 22475592] 

28. Liao H-X, et al. Vaccine induction of antibodies against a structurally heterogeneous site of 
immune pressure within HIV-1 envelope protein variable regions 1 and 2. Immunity. 2013; 
38:176–86. [PubMed: 23313589] 

29. Liao HX, et al. Antigenicity and immunogenicity of transmitted/founder, consensus, and chronic 
envelope glycoproteins of human immunodeficiency virus type 1. J. Virol. 2013; 87:4185–201. 
[PubMed: 23365441] 

30. Gao F, et al. Antigenicity and immunogenicity of a synthetic human immunodeficiency virus type 
1 group m consensus envelope glycoprotein. J. Virol. 2005; 79:1154–63. [PubMed: 15613343] 

31. Gaschen B, et al. Diversity considerations in HIV-1 vaccine selection. Science. 2002; 296:2354–60. 
[PubMed: 12089434] 

32. Liao H-X, et al. A group M consensus envelope glycoprotein induces antibodies that neutralize 
subsets of subtype B and C HIV-1 primary viruses. Virology. 2006; 353:268–82. [PubMed: 
17039602] 

33. Morris L, et al. Isolation of a human anti-HIV gp41 membrane proximal region neutralizing 
antibody by antigen-specific single B cell sorting. PLoS One. 2011; 6:e23532. [PubMed: 
21980336] 

34. Tibshirani R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B. 1996; 
58:267–288.

35. Lau KS, et al. In vivo systems analysis identifies spatial and temporal aspects of the modulation of 
TNF α induced apoptosis and proliferation by MAPKs. Sci. Signal. 2011; 4:ra16. [PubMed: 
21427409] 

36. Lau KS, et al. Multi-scale in vivo systems analysis reveals the influence of immune cells on TNF-α 
induced apoptosis in the intestinal epithelium. PLoS Biol. 2012; 10:e1001393. [PubMed: 
23055830] 

37. Janes KA, et al. A systems model of signaling identifies a molecular basis set for cytokine induced 
apoptosis. Science. 2005; 310:1646–53. [PubMed: 16339439] 

38. Woof JM, Mestecky J. Mucosal immunoglobulins. Immunol. Rev. 2005; 206:64–82. [PubMed: 
16048542] 

39. Russell MW, Mestecky J. Humoral immune responses to microbial infections in the genital tract. 
Microbes Infect. 2002; 4:667–77. [PubMed: 12048036] 

Archary et al. Page 13

Mucosal Immunol. Author manuscript; available in PMC 2016 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



40. Devito C, et al. Cross-clade HIV-1 specific neutralizing IgA in mucosal and systemic 
compartments of HIV-1 exposed, persistently seronegative subjects. J. Acquir. Immune Defic. 
Syndr. 2002; 30:413–20. [PubMed: 12138348] 

41. Moja P, et al. Prognostic value of antibodies to p66 during the course of HIV1 infection. P. Moja, 
V. Cheynet, T. Bourlet, F. Mallet, F. Lucht, B. Pozzetto, C. Genin. 1997. Progn. value antibodies to 
p66 Dur. course HIV1 Infect. Immunol. Lett. 56 133. 1997; 1-3:133.

42. French MA, et al. Isotype-switched immunoglobulin G antibodies to HIV Gag proteins may 
provide alternative or additional immune responses to ‘protective’ human leukocyte antigen-B 
alleles in HIV controllers. AIDS. 2013; 27:519–28. [PubMed: 23364441] 

43. Kersh EN, et al. Reduced inflammation and CD4 loss in acute SHIV infection during oral pre-
exposure prophylaxis. J. Infect. Dis. 2012; 206:770–9. [PubMed: 22740713] 

44. Hendrix CW, et al. MTN-001: randomized pharmacokinetic cross-over study comparing tenofovir 
vaginal gel and oral tablets in vaginal tissue and other compartments. PLoS One. 2013; 8:e55013. 
[PubMed: 23383037] 

45. Louissaint NA, et al. Single dose pharmacokinetics of oral tenofovir in plasma, peripheral blood 
mononuclear cells, colonic tissue, and vaginal tissue. AIDS Res. Hum. Retroviruses. 2013; 
29:1443–50. [PubMed: 23600365] 

46. Kersh EN, et al. T cell chemo-vaccination effects after repeated mucosal SHIV exposures and oral 
pre-exposure prophylaxis. PLoS One. 2011; 6:e19295. [PubMed: 21541293] 

47. Zolla-Pazner S, et al. Vaccine-induced IgG Antibodies to V1V2 Regions of Multiple HIV-1 
Subtypes Correlate with Decreased Risk of HIV-1 Infection. PloS One. 2014; 9:e87572. [PubMed: 
24504509] 

48. Johansson M, Lycke NY. Immunology of the human genital tract. Curr. Opin. Infect. Dis. 2003; 
16:43–9. [PubMed: 12821829] 

49. Li Z, et al. Transfer of IgG in the female genital tract by MHC class I-related neonatal Fc receptor 
(FcRn) confers protective immunity to vaginal infection. Proc. Natl. Acad. Sci. U. S. A. 2011; 
108:4388–93. [PubMed: 21368166] 

50. Gupta S, et al. The Neonatal Fc receptor (FcRn) enhances human immunodeficiency virus type 1 
(HIV-1) transcytosis across epithelial cells. PLoS Pathog. 2013; 9:e1003776. [PubMed: 24278022] 

51. Ackerman ME, et al. Natural variation in Fc glycosylation of HIV-specific antibodies impacts 
antiviral activity. J. Clin. Invest. 2013; 123:2183–92. [PubMed: 23563315] 

52. Zhou M, Ruprecht RM. Are anti-HIV IgAs good guys or bad guys? Retrovirology. 2014; 11:109. 
[PubMed: 25499540] 

53. Sholukh AM, et al. Defense-in-depth by mucosally administered anti-HIV dimeric IgA2 and 
systemic IgG1 mAbs: Complete protection of rhesus monkeys from mucosal SHIV challenge. 
Vaccine. 2015; 33:2086–95. [PubMed: 25769884] 

54. Nicholas KJ, et al. B cell responses to HIV antigen are a potent correlate of viremia in HIV-1 
infection and improve with PD 1 blockade. PLoS One. 2013; 8:e84185. [PubMed: 24358343] 

55. Barouch DH, et al. Vaccine protection against acquisition of neutralization-resistant SIV challenges 
in rhesus monkeys. Nature. 2012; 482:89–93. [PubMed: 22217938] 

56. Wesemann DR, et al. Microbial colonization influences early B-lineage development in the gut 
lamina propria. Nature. 2013; 501:112–5. [PubMed: 23965619] 

57. Anahtar MN, et al. Cervicovaginal Bacteria Are a Major Modulator of Host Inflammatory 
Responses in the Female Genital Tract. Immunity. 2015; 42:965–976. [PubMed: 25992865] 

58. Xiao P, et al. Multiple vaccine-elicited nonneutralizing antienvelope antibody activities contribute 
to protective efficacy by reducing both acute and chronic viremia following simian/human 
immunodeficiency virus SHIV89.6P challenge in rhesus macaques. J. Virol. 2010; 84:7161–73. 
[PubMed: 20444898] 

59. Letvin NL, et al. Immune and Genetic Correlates of Vaccine Protection Against Mucosal Infection 
by SIV in Monkeys. Sci. Transl. Med. 2011; 3:81ra36.

60. Florese RH, et al. Contribution of nonneutralizing vaccine-elicited antibody activities to improved 
protective efficacy in rhesus macaques immunized with Tat/Env compared with multigenic 
vaccines. J. Immunol. 2009; 182:3718–27. [PubMed: 19265150] 

Archary et al. Page 14

Mucosal Immunol. Author manuscript; available in PMC 2016 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



61. Gómez-Román VR, et al. Vaccine-elicited antibodies mediate antibody-dependent cellular 
cytotoxicity correlated with significantly reduced acute viremia in rhesus macaques challenged 
with SIVmac251. J. Immunol. 2005; 174:2185–9. [PubMed: 15699150] 

62. Hessell AJ, et al. Fc receptor but not complement binding is important in antibody protection 
against HIV. Nature. 2007; 449:101–4. [PubMed: 17805298] 

63. Barouch DH, et al. Protective efficacy of a global HIV-1 mosaic vaccine against heterologous 
SHIV challenges in rhesus monkeys. Cell. 2013; 155:531–9. [PubMed: 24243013] 

64. Bournazos S, et al. Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in 
vivo activity. Cell. 2014; 158:1243–53. [PubMed: 25215485] 

65. Bard E, et al. Validation of a high sensitive immunoenzymatic assay to establish the origin of 
immunoglobulins in female genital secretions. J. Immunoassay Immunochem. 2002; 23:145–62. 
[PubMed: 12033640] 

66. Mestecky J, Alexander RC, Wei Q, Moldoveanu Z. Methods for evaluation of humoral immune 
responses in human genital tract secretions. Am. J. Reprod. Immunol. 2011; 65:361–7. [PubMed: 
21087333] 

67. Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat. Rev. Immunol. 
2006; 6:148–58. [PubMed: 16491139] 

68. Devito C, et al. Intranasal HIV-1-gp 160-DNA/gp41 Peptide Prime Boost Immunization Regimen 
in Mice Results in Long-Term HIV-1 Neutralizing Humoral Mucosal and Systemic Immunity. J. 
Immunol. 2004; 173:7078–7089. [PubMed: 15557206] 

69. Duerr A. Update on mucosal HIV vaccine vectors. Curr. Opin. HIV AIDS. 2010; 5:397–403. 
[PubMed: 20978380] 

Archary et al. Page 15

Mucosal Immunol. Author manuscript; available in PMC 2016 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Mucosal HIV-1-specific IgG but fewer IgA responses in the female genital tract of 
HIV-1-infected women participating in the CAPRISA 004 microbicide trial
Cervicovaginal lavage HIV-1 IgG (a–e) and HIV-1 IgA (f–j) to gp70 V1V2, gp120, V3, Gag 

and p66 antigens were measured in HIV-1-infected CAPRISA 004 participants from 3 to 39 

months post infection. Solid lines represent participants in the Tenofovir arm and dotted 

lines represent participants in the placebo arm. In parentheses below are the sample sizes for 

each time point. Asterisks indicate significant differences in detection between the arms at 

respective time points (Fisher’s exact test).
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Figure 2. Plasma HIV-1-specific IgG and IgA are frequently detected in HIV-1-infected women 
participating in the CAPRISA 004 microbicide trial
Plasma HIV-1 IgG (a–e) and HIV-1 IgA (f–j) to gp70 V1V2, gp120, V3, Gag and p66 

antigens were measured in HIV-1-infected CAPRISA 004 participants from 3 to 39 months 

post infection. Solid lines represent participants in the tenofovir arm and dotted lines 

represent participants in the placebo arm. In parentheses below are the sample sizes for each 

time point. Asterisks indicate significant differences in detection between the arms at 

respective timepoints (Fisher’s exact test).
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Figure 3. Increased p66 plasma IgA and CVL IgG response magnitude in acute infection with 
prior tenofovir use
Plasma response magnitude is presented as MFI*dilution in a (IgG) and b (IgA). CVL 

response magnitude is presented as specific activity (MFI* dilution factor per ng ml −1) in c 

(IgG). Boxes denote the 25th and 75th percentile and whiskers denote the minimum and 

maximum values. The horizontal line represents the median response. Responses with 

MFI<100 are below the limit of detection for this assay. P<0.05 were statistically significant. 

Comparisons of MFIs between tenofovir and placebo were done using the Wilcoxon Rank 

Sums test. CVL, cervicovaginal lavage; MFI, mean fluorescent intensity; NS, not significant.
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Figure 4. Six and 12 month antibody signatures associated with participants in the tenofovir and 
placebo arms
LASSO identified a signature of 8 antibody specificities that separated tenofovir (red- n=13) 

and control groups (blue-n=18) in a PLSDA model with 83% calibration accuracy and 77% 

cross-validation accuracy (scores plot; A). The loadings plot depicts weighted loadings of 

individual antibody specificities within the distinguishing signature (B). Five of these 

specificities were positively associated with tenofovir (negatively loaded on LV1; plasma 

p66 IgA at months 6 and 12, plasma p66 IgG at month 12, CVL p66 IgA at month 6, and 

CVL gp41 IgA at month 12) and three were negatively associated with tenofovir (positively 

loaded on LV1; plasma Clade C V3 linear epitope IgA at month 12, p24 IgG at month 6 and 

Consensus Clade C Env gp140 IgG at month 12. Latent variable 1 accounted for 24.84% and 

latent variable 2 accounted for 15.38% of data variance. For the analysis, only 6 and 12 

month measurements were used for participants where <4% of the total data was missing.
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Figure 0005
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Figure 0006

Figure 5. p24-specific IgG responses correlate between plasma and CVL in tenofovir-treated 
women
Beta (β) coefficients representing correlation between the magnitude of HIV-1-specific 

responses in plasma and CVL from 3 to 39 months post HIV-1 infection. IgG (a) and IgA (c) 

shown for the tenofovir arm and IgG (b) and IgA (d) are shown for the placebo arm. The 

colored circle (●) indicates a statistically significant correlation (P<0.05) (F-test from Linear 

Mixed Model). An asterisk (*) denotes statistical significance adjusted for false discovery 

rate. CVL, cervicovaginal lavage.
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Table 1

Behavioural and clinical characteristics of the women in this study

Characteristic All (N=48) Tenofovir (N=24) Placebo (N=24)

Rural % (n) 58.3% (28) 58.3% (14) 58.3% (14)

Median Age in years (IQR) 23 (22-25) 24 (22-28) 22 (22-23)

Median days PI* at enrolment (IQR) 38 (24-65) 35 (27-63) 45 (23-65)

Median CD4 count (cells/μl) (IQR) 498 (434-655) 468 (444-569) 515 (433-685)

Median viral load (copies/ml) (IQR) 59050 (17300-135500) 80600 (22000-130000) 54800 (13600-148000)

Time to HIV-infection from enrolment in months (IQR)◆ 9.2 (4.9-14.1) 12.8 (6.6-16.6) 7.4 (3.3-10.6)

Completed high school % (n) 54.2% (26) 41.7% (10) 66.7% (16)

Hormonal contraception# (n) 97.9% (47) 100% (24) 95.8% (23)

Marital status % (n)

Stable/married partner 79.2% (38) 87.5% (21) 70.8% (17)

> 2 partners 2.1% (1) 0.0% (0) 4.2% (1)

Single 18.7% (9) 12.5% (3) 25.0% (6)

Number of reported sexual partners in the last 3 months** 
% (n)

0 to 1 93.8% (45) 95.8% (23) 91.7% (22)

2 to 5 6.2% (3) 4.2% (1) 8.3% (2)

Reported condom used at last sex act % (n) 68.8% (33) 75.0% (18) 62.5% (15)

*
PI = post-infection

**
Two non-rapid progressing women had missing sexual partner data (in previous 3 months) as they refused to answer the question.

#
Hormonal contraception use included the injectable depot medroxyprogesterone acetate and norethisterone, and oral combined contraception. One 

woman in the placebo arm of the study was using an intrauterine device.

◆
Time to HIV infection was significantly different between the tenofovir and placebo arms- p= 0.02.
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Table 2

Viral loads correlated with plasma IgG and IgA at 6 months in the tenofovir and placebo arms

HIV-Antigen Viral Load versus 
Plasma IgG (Tenofovir) 

n=23

Viral Load versus Plasma 
IgG (Placebo) n=23

Viral Load versus 
Plasma IgA (Tenofovir) 

n=23

Viral Load versus 
Plasma IgA (Placebo) 

n=23

r-value pvalue r-value pvalue r-value p-value r-value p-value

gp70 V1V2 0.004 NS 0.39 0.06 0.26 NS 0.17 NS

Clade C V3 Linear 
Epitope

0.02 NS 0.58
0.003

* −0.1 NS 0.59
0.003

*

Consensus Group M 
gp120

0.41 0.05 0.55
0.007

* 0.08 NS 0.47 0.03

1086 C.gp140 0.52 0.01 0.44
0.03

* 0.07 NS 0.43 0.04

Consensus Group M 
gp140

0.23 NS 0.43
0.04

* 0.06 NS 0.53
0.009

*

Consensus Clade C 
Env gp140

0.35 0.09 0.44
0.03

* 0.19 NS 0.53
0.009

*

Consensus Clade B 
gp41 ID epitope

0.48 0.02 0.45
0.03

* −0.08 NS 0.33 NS

Gp41 0.43 0.03 0.49
0.02

* 0.07 NS 0.46 0.02

p66 0.02 NS 0.73
<0.0001

* 0.41 0.05 0.38 0.07

p24 0.02 NS 0.61
0.002

* −0.03 NS 0.08 NS

P<0.05 indicates statistically significant correlation. NS, not significant.

*
Remains significant after false discovery rate adjustment.
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Table 3

CD4 cells correlated with plasma IgG and IgA at 6 months in the tenofovir and placebo arms

HIV-Antigen CD4 versus Plasma IgG 
(Tenofovir) n=23

CD4 versus Plasma IgG 
(Placebo) n=23

CD4 versus Plasma IgA 
(Tenofovir) n=23

CD4 versus Plasma IgA 
(Placebo) n=23

r-value p-value r-value p-value r-value p-value r-value p-value

gp70 V1V2 −0,18 NS −0,26 NS −0.25 NS −0,07 NS

Clade C V3 Linear 
Epitope

−0,18 NS −0,30 NS −0,18 NS −0,53
0.008

*

Consensus Group M 
gp120

−0,49 0.02 −0,28 NS −0,48 0.02 −0,47 0.02

1086 C.gp140 −0.53 0.01 −0.22 NS −0.61
0.003

* −0.33 NS

Consensus Group M 
gp140

−0,25 NS −0,25 NS −0.61
0.002

* −0,51 0.01

Consensus Clade C 
Env gp140

−0,48 0.02 −0,26 NS −0.77
<0.001

* −0.36 NS

Consensus Clade B 
gp41 ID epitope

−0,42 0.05 −0,09 NS −0,37 NS −0,28 NS

Gp41 −0,40 0.06 −0,05 NS 0,42 0.05 −0.42 0.05

p66 −0,03 NS −0,24 NS −0.43 0.05 −0.50 0.02

p24 −0,005 NS −0,10 NS 0.02 NS −0.05 NS

P<0.05 indicates statistically significant correlation. NS, not significant.

*
Remains significant after false discovery rate adjustment.
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