2,240 research outputs found

    von Laue's Theorem and Its Applications

    Full text link
    von Laue's theorem, as well as its generalized form, is strictly proved in detail for its sufficient and necessary condition (SNC). This SNC version of Laue's theorem is used to analyze the infinitely extended electrostatic field produced by a charged metal sphere in free space, and the static field confined in a finite region of space. It is shown in general that the total (Abraham = Minkowski) EM momentum and energy for the electrostatic field cannot constitute a Lorentz four-vector. A derivative von Laue's theorem, which provides a criterion for a Lorentz invariant, is also presented.Comment: Published version, with "Materials to help reading" attached. 12 pages, 1 figur

    Quartz crystal microbalance use in biological studies

    Get PDF
    Design, development, and applications of quartz crystal microbalance are discussed. Two types of crystals are used. One serves as reference and other senses changes in mass. Specific application to study of bacterial spores is described

    Interpretation of Other Minerals in a Grant or Reservation of a Mineral Interest

    Get PDF

    Phi meson production in near threshold proton-nucleus collisions

    Full text link
    The cross section for production of Phi mesons in proton-nucleus reactions is calculated as a function of the target mass. The decay width of the Phi meson is affected by the change of the masses of the Phi, K+ and K- mesons in the medium. A strong attractive K- potential leads to a measurable change of the behavior of the cross section as a function of of the target mass. Comparison between the kaon and electron decay modes are made.Comment: 4 pages, 1figure, new figure, new reference

    Stoichiometry and Change of the mRNA Closed-Loop Factors as Translating Ribosomes Transit from Initiation to Elongation

    Get PDF
    Protein synthesis is a highly efficient process and is under exacting control. Yet, the actual abundance of translation factors present in translating complexes and how these abundances change during the transit of a ribosome across an mRNA remains unknown. Using analytical ultracentrifugation with fluorescent detection we have determined the stoichiometry of the closed-loop translation factors for translating ribosomes. A variety of pools of translating polysomes and monosomes were identified, each containing different abundances of the closed-loop factors eIF4E, eIF4G, and PAB1 and that of the translational repressor, SBP1. We establish that closed-loop factors eIF4E/eIF4G dissociated both as ribosomes transited polyadenylated mRNA from initiation to elongation and as translation changed from the polysomal to monosomal state prior to cessation of translation. eIF4G was found to particularly dissociate from polyadenylated mRNA as polysomes moved to the monosomal state, suggesting an active role for translational repressors in this process. Consistent with this suggestion, translating complexes generally did not simultaneously contain eIF4E/eIF4G and SBP1, implying mutual exclusivity in such complexes. For substantially deadenylated mRNA, however, a second type of closed-loop structure was identified that contained just eIF4E and eIF4G. More than one eIF4G molecule per polysome appeared to be present in these complexes, supporting the importance of eIF4G interactions with the mRNA independent of PAB1. These latter closed-loop structures, which were particularly stable in polysomes, may be playing specific roles in both normal and disease states for specific mRNA that are deadenylated and/or lacking PAB1. These analyses establish a dynamic snapshot of molecular abundance changes during ribosomal transit across an mRNA in what are likely to be critical targets of regulation

    QCD matter within a quasi-particle model and the critical end point

    Full text link
    We compare our quasi-particle model with recent lattice QCD results for the equation of state at finite temperature and baryo-chemical potential. The inclusion of the QCD critical end point into models is discussed. We propose a family of equations of state to be employed in hydrodynamical calculations of particle spectra at RHIC energies and compare with the differential azimuthal anisotropy of strange and charm hadrons.Comment: talk at Quark Matter 2005, August 4 - 9, 2005, Budapest, Hungar

    Time dependence of Bragg forward scattering and self-seeding of hard x-ray free-electron lasers

    Get PDF
    Free-electron lasers (FELs) can now generate temporally short, high power x-ray pulses of unprecedented brightness, even though their longitudinal coherence is relatively poor. The longitudinal coherence can be potentially improved by employing narrow bandwidth x-ray crystal optics, in which case one must also understand how the crystal affects the field profile in time and space. We frame the dynamical theory of x-ray diffraction as a set of coupled waves in order to derive analytic expressions for the spatiotemporal response of Bragg scattering from temporally short incident pulses. We compute the profiles of both the reflected and forward scattered x-ray pulses, showing that the time delay of the wave τ\tau is linked to its transverse spatial shift Δx\Delta x through the simple relationship Δx=cτcotθ\Delta x = c\tau \cot\theta, where θ\theta is the grazing angle of incidence to the diffracting planes. Finally, we apply our findings to obtain an analytic description of Bragg forward scattering relevant to monochromatically seed hard x-ray FELs.Comment: 11 pages, 6 figure

    Microscopic dielectric response functions in semiconductor quantum dots

    Get PDF
    We calculate and model the microscopic dielectric response function for quantum dots using first principle methods. We find that the response is bulklike inside the quantum dots, and the reduction of the macroscopic dielectric constants is a surface effect. We present a model for the microscopic dielectric function which reproduces well the directly calculated results and can be used to solve the Poisson equation in a nanosystem

    Overview of Hard processes at RHIC: high-pt light hadron and charm production

    Full text link
    An overview of the experimental results on high-pt light hadron production and open charm production is presented. Data on particle production in elementary collisions are compared to next-to-leading order perturbative QCD calculations. Particle production in Au+Au collisions is then compared to this baseline.Comment: 9 pages, 6 figures, Strange Quark Matter 200
    corecore