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RESEARCH ARTICLE
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1 Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH,
03824, United States of America, 2 Laboratory of Cell Reproduction, Institute of Microbiology of ASCR,
Prague, Videnska 1083, Czech Republic
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Abstract
Protein synthesis is a highly efficient process and is under exacting control. Yet, the actual

abundance of translation factors present in translating complexes and how these abun-

dances change during the transit of a ribosome across an mRNA remains unknown. Using

analytical ultracentrifugation with fluorescent detection we have determined the stoichiome-

try of the closed-loop translation factors for translating ribosomes. A variety of pools of trans-

lating polysomes and monosomes were identified, each containing different abundances of

the closed-loop factors eIF4E, eIF4G, and PAB1 and that of the translational repressor,

SBP1. We establish that closed-loop factors eIF4E/eIF4G dissociated both as ribosomes

transited polyadenylated mRNA from initiation to elongation and as translation changed

from the polysomal to monosomal state prior to cessation of translation. eIF4G was found to

particularly dissociate from polyadenylated mRNA as polysomes moved to the monosomal

state, suggesting an active role for translational repressors in this process. Consistent with

this suggestion, translating complexes generally did not simultaneously contain eIF4E/

eIF4G and SBP1, implying mutual exclusivity in such complexes. For substantially deade-

nylated mRNA, however, a second type of closed-loop structure was identified that con-

tained just eIF4E and eIF4G. More than one eIF4G molecule per polysome appeared to be

present in these complexes, supporting the importance of eIF4G interactions with the

mRNA independent of PAB1. These latter closed-loop structures, which were particularly

stable in polysomes, may be playing specific roles in both normal and disease states for

specific mRNA that are deadenylated and/or lacking PAB1. These analyses establish a

dynamic snapshot of molecular abundance changes during ribosomal transit across an

mRNA in what are likely to be critical targets of regulation.
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Introduction
The regulation of protein synthesis is central to the formation of proteins in all organisms.
Much of this control involves changes in abundances and activities of a variety of proteins asso-
ciated with the translating ribosome. The current model for translation indicates that in protein
synthesis the mRNA forms a putative closed-loop structure in which eIF4E, the 5’mRNA cap
binding protein, binds eIF4G, which in turn binds the poly(A)-binding protein (PAB1) that is
bound to the 3’ poly(A) tail of mRNA [1–3]. This structure would link the 5’ end of the mRNA
to the 3’ end. The resultant complex interacts with the 43S complex (40S small ribosomal sub-
unit, translation initiation factors eIF2, -3, -5, and -1 and the charged methionine tRNA) to
form the 48S complex. This 48S complex then scans for the initiation codon and brings in the
60S large ribosomal subunit to form the 80S ribosome bound to the mRNA for the start of pro-
tein synthesis [4]. Translation termination involves eRF1 recognition of the stop codon that in
consort with other proteins ends protein synthesis [5,6].

Many of the studies leading to this model of translation have relied upon in vitro analyses,
and they and in vivo experiments have not clearly indicated the absolute abundances of the
closed-loop factors in the translating ribosome or how their abundances change during transla-
tion. For example, eRF1 has been shown to associate early with the mRNA during translation
initiation based on in vitro experiments, but at what abundance it associates is not known [7].
Also, several studies have suggested that eIF4E/eIF4G can form a closed-loop structure in the
absence of PAB1, but the prevalence of this type of structure as compared to the canonical
closed-loop structure containing all three components has not been defined [8–10].

A quantitative determination of the components present at different stages of translation is
required to obtain a fuller understanding of this process. Current biochemical and molecular
biological techniques such as mass spectrometry or sucrose gradient analysis and similar chro-
matographic techniques give only a very crude characterization of the stoichiometry within
translation complexes. For instance, mass spectrometric procedures can identify components
that are present in complexes but do not readily inform about the size of the complex analyzed
or the quantitation for the components of the complex. Sucrose gradient analysis and similar
chromatographic techniques identify sizes, but give only rough information about component
numbers (usually relying on the time-consuming and imprecise Western analysis).

The recent demonstration that analytical ultracentrifugation with fluorescent detection
(AU-FDS) can rapidly and precisely identify sizes, components, and changes in composition of
multiple protein complexes [11,12] indicates that AU-FDS can produce information presently
either unavailable or difficult to obtain. We have consequently expanded the use of AU-FDS to
determine the absolute abundances of proteins within protein synthesis complexes using the
translating ribosome as our model system. The basic technique utilizes our previous AU-FDS
identification of the translating ribosomes following a one-step affinity purification step using
a Flag-tagged component of the protein synthesis machinery. These complexes consist of 40S
and 60S ribosomal subunits, the translational initiation factors eIF4E, eIF4G, and PAB1 [11]
and at least five other proteins: eRF1 (translation termination), SBP1 (translational repression)
[13], and the general mRNA binding proteins SLF1, SSD1, and PUB1 [12]. AU-FDS combined
with the one-step purification of translating complexes also specifically offers an opportunity
to study the 77S monosomal translating complex. Previously, the co-migration of the 80S free
ribosome with the 77S monosomal translating complex following sucrose gradient centrifuga-
tion studies has not allowed the detection of the 77S monosomal translating complex, although
studies have suggested that it makes up about 5% of the total translating ribosomal pool [14].

We have consequently determined the absolute concentration of components of the 77S
monosomal and polysomal complexes during initiation and elongation. Our AU-FDS results
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indicate that translating ribosomes undergo a dynamic shift in factors such as eIF4E, eIF4G,
and SBP1 during translation: polysomal complexes stabilize the closed-loop structure, whereas
monosomal translating complexes display significant loss of eIF4E, specific dissociation of
eIF4G, and deadenylation. Translation complexes appeared to contain two types of closed-loop
structures, those carrying eIF4E/eIF4G/PAB1 and those containing just eIF4E/eIF4G, confirm-
ing the importance of eIF4G interactions with the mRNA. The identification of clearly differ-
entiable translating complexes suggests that translation is not monolithic and there exist a
sizeable number of ribosomal complexes with diverse quantitative variations in the closed-loop
components. These various pools imply complex regulation and specific mRNA-dependent
effects.

Results

Stoichiometric analysis of the components in the polysomal and
monosomal translational complexes
A stoichiometric analysis of the monosomal 77S and polysomal translating complexes was
undertaken to provide a quantitative view of the translation machinery in terms of each of the
key closed-loop structure components (eIF4E, eIF4G, and PAB1), eRF1, and SBP1 as ribo-
somes transit the mRNA. Starting with the 77S monosomal translating complex, in order to
determine the absolute abundance of each component in this translating complex, we com-
bined two kinds of AUC analyses. First, AU-FDS analysis monitored the fluorescent intensity
of a GFP-tagged protein in the 77S complex and, consequently, informed as to the abundance
of the GFP-tagged protein in the complex. Second, AU-absorption analysis was conducted at
230 nm, taking advantage of absorption of the peptide backbone at this wavelength. AU-A230

analysis quantitatively determined how much material, both total protein and RNA (about
3.2-fold better detection of protein than RNA at this wavelength), was actually analyzed in the
AU-FDS analysis. AUC analysis, because of its much higher sensitivity and increased resolu-
tion as compared to Western blotting assays, allowed us to calculate the exact and absolute
abundance of each GFP-tagged protein relative to the total amount of material within the 77S
complex.

To conduct these experiments, cycloheximide was added to cells prior to cell lysis to ensure
that the 77S monosomal translating complex remained attached to the mRNA during purifica-
tion and analysis. Previous analyses indicated that about half of the translating ribosomes run-
off the mRNA in the absence of cycloheximide [11]. To selectively purify specific types of
translating complexes, we conducted a one-step Flag agarose purification of our complexes
prior to our AUC analyses using strains containing different Flag-tagged translational factors
[11]. The Flag-tagged factors studied were Flag-PAB1, eIF4E-Flag, RPL25A-Flag (component
of the 60S ribosome), and Flag-SBP1 [11, 12, 15]. Each of these purifications would purify dif-
ferent pools of ribosomal-associated material. The 80S free ribosome would be purified using
RPL25A-Flag [11, 14, 16], whereas Flag-PAB1 purified translating complexes [11, 15, 17, 18]
containing mRNA with poly(A) tails of at least 24 A’s [19], the minimal size to which PAB1
binds [20]. eIF4E-Flag and Flag-SBP1 would purify complexes containing eIF4E and SBP1,
respectively, irrespective of whether the translational complexes contained a poly(A) tail. In
the case of Flag-PAB1, co-expression of Flag-PAB1 with PAB1-GFP did not result in apprecia-
ble PAB1-GFP material co-immunoprecipitating with Flag-PAB1. This result implies that in
our experiments only one PAB1 was present per mRNA and that bulk poly(A) tail lengths
were in the range of 24 to below 48 A’s, a value in agreement with numerous studies of individ-
ual mRNA [14, 21–27]. In particular, an analysis of all PAB1-associated mRNA found that
bulk poly(A) length ranged from 25 to 37 A’s [19].

Stoichiometry of Closed-Loop Factors during Translation
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The abundances of factors within the monosomal 77S complex were standardized to the
STM1 protein that has been found to be present in a 1:1 ratio with the 80S free ribosome under
glucose depleted conditions when mRNA translation has been repressed [28]. STM1 is consid-
ered to hold the 80S free ribosome together through its binding to the channel where mRNA
binds; this would prevent the ribosome associating with the mRNA [28, 29]. For ease of subse-
quent analysis, because STM1 abundance in the pool of ribosomes would change once transla-
tion resumed, we calculated, after purifying the 80S free ribosome under glucose-depleted
growth conditions using RPL25A-Flag, the ratio of STM1 to RPS4B (present in a 1:1 ratio in
each ribosome of which RPS4B is a part, irrespective of growth condition) (Fig 1A). We found
that the ratio of STM1 to RPS4B in the 80S free ribosome was 3.6:1 under conditions in which
glucose had been depleted from the medium (Table 1). In this way, by following RPS4B abun-
dance, in subsequent experiments, as compared to that of other translational factors, we could
determine the abundance of these factors per ribosome.

Fig 1. AU-FDS and AU-A230 analyses of extracts containing GFP fusions to translation components. For each set of data shown in Fig 1, the AUC
analysis was from the same centrifuge run. Cells were grown on glucose-containing medium except as indicated. glu + - 10 min: growth was on glucose-
containing medium followed by growth on medium depleted for glucose for 10 min; and glu +—+: growth was the same as glu + - 10 min except glucose was
added back for 1 min. In panel A, it should be noted that the AU-A230 abundance for the RPS4B-GFP sample was twice that of the STM1-GFP sample. A.
RPL25A-Flag pull downs were conducted on strains carrying either RPS4B-GFP or STM1-GFP; B-D. Flag-PAB1 pull downs were conducted on strains
carrying the GFP fusions as indicated. Data displayed in panels B and D were done on the same day on extracts split between the two centrifuge runs.

doi:10.1371/journal.pone.0150616.g001
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Using Flag-PAB1, Fig 1B and 1C display representative AU-FDS analyses and the relative
abundance of the closed-loop factors eIF4E, eIF4G1, and eIF4G2 found in the polyadenylated
77S monosomal translating complex relative to RPS4B. The results from AU-A230 analysis
informed that relatively equal amounts of material were analyzed for each comparable
AU-FDS run (Fig 1D, for example). Detailed analysis of fifty-one experiments indicated that
preparation reproducibility between samples purified on the same day was near 1
(1.02 ± 0.028).

Table 1 gives the values under glucose growth conditions (a proxy for steady-state transla-
tional elongation) of the stoichiometry of factors known to be present in the 77S monosomal
translating complex following purification of Flag-PAB1. Our data showed that for every 100
monosomal translating complexes carrying a poly(A) tail only 16% contained eIF4E and even
less, about 9.5% carried eIF4G (both eIF4G1 and eIF4G2) (Table 1). Since in current models of
eukaryotic translation, only one eIF4E interacts with the bridging protein eIF4G, our results
demonstrate that substantial amounts of the eukaryotic initiation factors eIF4E and eIF4G are
not present with polyadenylated mRNA during the elongation process for a single translating
ribosome and that eIF4G is less likely to be present than eIF4E. eRF1 was found to be present
in only about 1 of every 100 monosomal translating complexes. Similarly low levels of SBP1,
SLF1, and SSD1 were also present in the 77S monosomal translating complex (ranging from 1
to 2.5 for every 100 mRNA), while PUB1 levels were too low to be quantitatively determined

Table 1. Relative levels of proteins in the 77Smonosomal translating complex during different stages of translation.

Flag-PAB1 eIF4E-Flag SBP1-Flag

Factor Initiation Elongation Initiation Elongation Elongation

mRNA 100 100 100 100 100

80S ribosome 100 100 100 100 100

PAB1 100 100 15 ± 1.4 12 ± 0.69 < 0.3

eIF4E 23 ± 1.7 16 ± 0.67 100 100 < 0.3

eIFG1 8.7 ± 1.0 5.6 ± 0.56 20 ± 2.4 19 ± 0.78 < 0.3

eIF4G2 6.2 ± 0.44 3.9 ± 0.028 15 ± 0.32 15 ± 3.4 < 0.3

eRF1 0.97 ± 0.069 0.97 ± 0.083 N.D. 2.8 ± 0.39 < 0.3

SBP1 3.3 ± 0.021 2.1 ± 0.44 N.D. < 0.3 100

SSD1 1.8 ± 0.011 1.0 ± 0.051 N.D. N.D. N.D.

SLF1 3.5 ± 0.015 2.5 ± 0.17 N.D. N.D. N.D.

PUB1 N.D. < 0.3 N.D. N.D. N.D.

The values represent the average (± Standard Error of the Mean, S.E.M.). N.D.- Not determined. Three to six independent replicates were analyzed

except for Flag-PAB1 analyses of SSD1, SLF1, and PUB1 in which duplicates were analyzed. The number of mRNA was set at 100. The ratio of mRNA

to 80S ribosomes present in the 77S complex was determined by first calculating the ratio of STM1 to RPS4B in the 80S free ribosome purified with

RPL25A-Flag [11]. This value under glucose deprivation conditions was found to be 3.6 ± 0.20 (three replicas). Assuming one STM1 molecule per 80S

ribosome under glucose-depleted conditions [28], we used this ratio of 3.6 for standardizing RPS4B abundance to that of each ribosome. A slightly lower

ratio of STM1 to RPS4B was found under glucose growth conditions (3.0 ± 0.15) (six replicas), which is expected as the 77S monosomal translating

complex migrates where the free 80S migrates and more 77S complex would be present under glucose growth conditions than under glucose-depleted

conditions [11]. For RPL25A-Flag purified material we estimate, based on the abundance of PAB1, eIF4E, and eIF4G that migrates at 77S, that about 80

to 90% of the material present at 77S is free 80S ribosome, an important ratio relevant to understanding what is misleadingly termed the monosomal

complex that is identified by typical sucrose gradient analysis. Elongation conditions refer to cells grown to mid-log phase on 2% glucose, which

represents steady-state translational conditions in which it is assumed that the bulk of the translating ribosomes are in an elongation state across the

mRNA. Initiation conditions refer to cells grown first on 2% glucose, then depleted for glucose for 10 min to repress translation, and finally subjected to re-

initiation of translation with the addition of 2% glucose for 1 min.

doi:10.1371/journal.pone.0150616.t001
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(Table 1). This low level of eIF4E/eIF4G in monosomal translating complexes is consistent
with previous results that indicated that translating pools of mRNA that contain PAB1 corre-
spondingly often do not have eIF4E/eIF4G present [19].

eIF4E and eIF4G are preferentially present in the 77S complex at the
beginning of translation
In order to address the question as to how the intracellular abundance of these translation fac-
tors involved in the polyadenylated 77S monosomal translating complex changes during the
initiation phase of translation, we used the approach of assaying translation initiation by add-
ing glucose to glucose depleted cells which have arrested their translation processes [30].
Depletion of glucose significantly reduces the abundance of the 77S monosomal translating
complex to 36% (S.E.M. of 1.7%, 15 determinations) of what is observed during steady-state
growth, decreases polysomal abundance (glucose depleted cells contain 46% ± 4.9% of the
polysomes as found under elongation conditions, 19 samples), and results in significant trans-
lational cessation [11, 30]. Adding glucose back for 1 min to arrested cells is known to increase
the polysomal levels and re-initiate translation immediately [30]. We found that this treatment
restored the levels of the 77S monosomal translating complex to that observed under glucose
growth conditions (the abundance of the 77S monosomal translation complex upon re-initia-
tion was found to be 94% ± 2.1%, for 37 samples, of the abundance of the 77S complex found
under steady-state growth conditions) (Fig 2A and 2B). Therefore, increases in specific proteins
that were observed upon re-adding glucose for 1 min would be substantially the result of new
accumulation of those proteins in the reformation of new translating ribosomes. The relative
abundance of polysomal material (S values from about 90S to 200S) under our initiation condi-
tions, while increased from repressed conditions, was still only 62% (S.E.M. of ± 7.7% for 32
samples) of that found under elongation conditions. This result is expected, as a decreased
number of polysomes should be present at the beginning of translation prior to reaching
steady-state elongation conditions.

Our subsequent stoichiometric analysis for the polyadenylated 77S monosomal translating
complex under these initiation conditions indicated that the absolute abundances of eIF4E,
eIF4G1, and eIF4G2 increased by about 1.6-fold in the 77S complex after re-addition of glucose
for 1min to the glucose-starved cells as compared to steady-state elongation conditions (Fig 2C
to 2E as compared to RPS4B, Fig 2F; summarized in Table 1). These data are in agreement with
the translational model in which eIF4E and eIF4G should be more present for a ribosome
beginning translation. Importantly, for the monosomal translating complex, even at initiation,
a significant pool of PAB1-containing translating mRNA lacked both eIF4E and eIF4G. We
also observed that eRF1 displayed no increased abundance in the 77S monosomal translating
complex at the very beginning of translation (Table 1), which is consistent with the role or
eRF1 in termination. Surprisingly, however, the known translation repressor SBP1 was
observed to be 1.6-fold more abundant in the 77S monosomal translation complex during initi-
ation than elongation (Table 1).

To further verify that our conditions were indeed assaying initiation, we backed up the time
of re-adding glucose to glucose starved cells to occur at 0 min and at the same time we added
cycloheximide to freeze translating ribosomes. Because of the time delay in action of cyclohexi-
mide, we hypothesized we would be catching cellular initiation events just prior to our 1 min
time point described above, which would be closer to observing newly formed translation com-
plexes. The absolute abundances of eIF4E and eIF4G1 were found to increase in the polyadeny-
lated 77S monosomal translating complex at 0 min after adding glucose as compared to 1 min:
a 42% increase (S.E.M. of ± 1.6%) and 29% (± 0.66%), respectively. These results confirm our

Stoichiometry of Closed-Loop Factors during Translation
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Fig 2. Comparison of abundance of translation factors between initiation and elongation conditions.Growth conditions for initiation conditions (glu +
—+ 1 min) were obtained by adding glucose back to glucose depleted cells for 1 min, at which time cycloheximide was added and cells were harvested.
Elongation conditions (glu +) were cells grown on glucose growth conditions. A-F. GFP fusions were as indicated.

doi:10.1371/journal.pone.0150616.g002
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hypothesis that re-initiation events were being identified by these procedures (Fig 3A and 3B).
However, even under these earlier initiation conditions, the abundance of eIF4G was less than
that of eIF4E, implying decreased levels of eIF4G relative to eIF4E in the monosomal translat-
ing complex even at the commencement of translation.

During elongation eIF4E and eIF4G are preferentially associated in
polysomes
We subsequently determined the absolute abundance of closed-loop factors in the translating
polyadenylated polysomes (material that migrates from 90S to 200S), which consists primarily
of disomes (110 to 130S), some trisomes (130 to 160S), and much more minor contributions
from tetrasomes (160 to 200S), using the same methodology as described above with Flag-
PAB1 as our handle (Fig 3C to 3E). We estimated the average number of ribosomes per mRNA
for the 90S to 200S region for Flag-PAB1 pull downs by calculating the relative abundances of
different ribosomal subunits (RPS4B, RPL7A, and RPL6B) in disomal, trisomal, and tetrasomal
peaks in this region. We found that the mean number of ribosomes per mRNA for 38 analyses
was 2.4 ribosomes (S.E.M. of ± 0.060). As previously described [11], for reasons that are unclear
AUC analysis of polysomes does not adequately identify larger polysomal complexes than pen-
tasomes and under detects the actual levels of polysomes present as compared to the canonical
sucrose gradient centrifugation analysis. However, other types of macromolecules of S values
greater than 90S are readily identified following AUC analysis. Formaldehyde cross-linking of
polysomes in vivo prior to cell lysis did not assuage this issue [12], indicating that the some-
what ineffective visualization of polysomes by AUC analysis as compared to sucrose gradient
centrifugation analysis was not due to specific breakdown, conversion, or degradation of poly-
somal complexes. This lack of visualization of polysomes is not due to the inability of Flag aga-
rose beads to purify polysomal complexes, as we observe the same low level of polysomes when
crude extracts are analyzed by AUC analysis [11]. The most likely cause for this effect is the dif-
ferent centrifugation methodologies used between AUC analysis and sucrose gradient analysis.
In the latter case polysomes are condensed into increasing greater concentrations of sucrose,
possibly creating artificial associations.

During steady-state elongation, 27% of these ribosomes in polysomes contained eIF4E
(Table 2), a very significant increase over that observed for the monosomal translating complex
(Table 1 and Fig 4A). Most noteworthy, in these polysomes the total eIF4G abundance was
comparable to that of eIF4E, 27%, implying that in polyadenylated polysomes 100% of the
eIF4E-containing complexes were associated with eIF4G. eRF1 levels, in contrast, did not
increase in polysomes compared to monosomes and, in fact, were found to be extremely low
(Table 2). These results suggest that for mRNA with poly(A) tails eIF4G is more stabilized in
the closed-loop structure in polysomes than it is in monosomal translating complexes.

A similar stoichiometric analysis of closed-loop components in polyadenylated polysomes
under initiation conditions was also conducted. As was observed for the monosomal translat-
ing complexes, an increased abundance of closed-loop factors was present in polyadenylated
polysomes under initiation conditions as compared to elongation conditions (about 40%
more) (Table 2). Again, we observed that for polyadenylated polysomes under initiation condi-
tions the total levels of eIF4G were essentially equivalent to that of eIF4E, implying that eIF4G
presence in the closed-loop structure is stabilized by polysomal structure. While SBP1 levels in
Flag-PAB1 purified polysomes also appeared to increase under initiation conditions as com-
pared to elongation conditions, this increase did not appear to be significant. These results also
indicate that PAB1-associated translating mRNA, even if they are polysomal, often lack eIF4E
and eIF4G.

Stoichiometry of Closed-Loop Factors during Translation
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Fig 3. AU-FDS analysis of two initiation conditions and polysomes. A and B. Comparison of two different initiation conditions. C-E. Expanded c(s)
values to identify ribosomal-GFP protein migrations in polysomal material (greater than 90S).

doi:10.1371/journal.pone.0150616.g003
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eIF4E-containing translation complexes preferentially contain eIF4G
We subsequently used eIF4E-Flag to immunoprecipitate monosomal and polysomal complexes
to address the composition of closed-loop components when eIF4E was present even if the
mRNA were substantially deadenylated. A 77S complex was detected using eIF4E-Flag pull
downs followed by AU-A230 analysis (Fig 5A) or AU-FDS analysis (Fig 5B for RPS4B-GFP)
when compared to control pull-downs with strains containing only eIF4E. This putative 77S
complex was shown to become reduced in abundance following growth on glucose depleted
media, as expected for a 77S translating monosomal complex (see, for example, Fig 5C).
Table 1 summarizes the stoichiometric ratios under glucose steady-state conditions for the
abundance of factors found in the 77S monosomal translating complex as purified with eIF4E--
Flag (representative data in Fig 5D and 5E).

Several observations can be made from this data. First, only 12% of the eIF4E-containing
complexes contained PAB1, a result suggesting that the bulk of the eIF4E-mRNA translating
monosomal complexes have mRNA with poly(A) tails shorter than 24 A’s. This observation is
consistent with previous results that demonstrated that eIF4E- and eIF4G-containing bulk
mRNA have shorter poly(A) tails than PAB1-associated mRNA [19]. While it is possible that
PAB1 protein is dissociating from the poly(A) tail upon cell lysis, this seems very unlikely. For
instance, PAB1 associates very strongly with the poly(A) tail with a Kd of 11 nM [18], even 2 M
KCl salt washes dissociate only about 50% of PAB1 bound to poly(A) sepharose [17], and in
vivo formaldehyde cross-linking of translating complexes did not result in more Flag-PAB1
being detected in translating complexes as compared to cells not cross-linked prior to cell lysis
[12]. Second, for the 77S monosomal translating complex, 33% of the eIF4E complexes also
have eIF4G bound to them. These first two observations suggest a closed-loop structure on the
mRNA that can be formed between eIF4E and eIF4G even in the absence of PAB1. This con-
clusion is consistent with previous studies that indicate that eIF4G can bind mRNA, that these
interactions contribute significantly to translation [8–10], and that eIF4E/eIF4G mRNA com-
plexes often lack PAB1 [19]. Moreover, these results are in agreement with the recent observa-
tion that more mRNA actually form a closed-loop structure containing solely eIF4E and eIF4G
than do they form the canonical eF4E-eIF4G-PAB1-mRNA closed-loop structure [31]. Since
eIF4G appears to be as equally represented in polysomal material as is PAB1 (Fig 5) [11, 32],

Table 2. Relative levels of proteins in the polysomal translating complexes during different stages of translation.

Protein/mRNA Flag-PAB1 Initiation Flag-PAB1 Elongation eIF4E-Flag Initiation eIF4E-Flag Elongation

mRNA 100 100 100 100

80S ribosomes 240 240 210 310

PAB1 100 100 59 ± 11 74 ± 6.5

eIF4E 38 ± 3.0 27 ± 3.0 100 100

eIF4G1 26 ± 4.8 18 ± 1.1 79 ± 25 75 ± 5.6

eIF4G2 13 ± 0.87 9.4 ± 1.2 56 ± 14 61 ± 14.6

eRF1 < 0.3 < 0.3 N.D. < 0.3

SBP1 11 ± 1.7 8.3 ± 1.9 N.D. < 0.3

The values for the various translation factors in the polysomal material were determined as described in the Legend for Table 1. Initiation and elongation

conditions were as described in Table 1 and the text. For the AU-FDS analysis, individual polysomal complexes were not identified and instead the

abundance of all material ranging from 90S to 200S was considered “polysomal.” To determine the actual average distribution of ribosomes in this range,

we followed RPS4B-, RPL6B-, and RPL7A-GFP to identify discrete disomal, trisomal, and tetrasomal material. The relative abundance of each of these

fluorescent peaks was used to calculate the number of ribosomes per mRNA present in the 90S to 200S region.

doi:10.1371/journal.pone.0150616.t002
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Fig 4. Percentage of translation factors in polysomal versusmonosomal complexes. Elongation
conditions were as described in Table 1. The mRNA abundance was set at 100%. For a given Flag pull down,
the translation factor tagged with Flag was also set at 100%. A. Flag-PAB1 pull downs; B. eIF4E-Flag pull
downs.

doi:10.1371/journal.pone.0150616.g004
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this eIF4E-eIF4G-mRNA closed-loop structure would be important to the translation of many
mRNA. Third, no significant levels of SBP1 were found associated with eIF4E, suggesting that
the two proteins are present in mutually exclusive pools of 77S monosomal translating com-
plexes. Fourth, using eIF4E-Flag expressed in a strain carrying eIF4E-GFP, we were unable to

Fig 5. Analysis of eIF4E-Flag purified translation complexes.Growth conditions and analysis were conducted as described in Fig 1. A and B. Strains
were either transformed with eIF4E-Flag plasmid (eIF4E-Flag) or with no eIF4E plasmid (eIF4E).

doi:10.1371/journal.pone.0150616.g005
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purify any eIF4E-GFP material migrating at 77S. This result implies that there is only one
eIF4E molecule per mRNA in agreement with current theories.

Similar analyses for the abundance of factors in eIF4E-containing complexes were con-
ducted under the translation initiation conditions described above in which glucose was added
back for 1 min to glucose depleted cells. In this case, we observed a 25% increase in the number
of eIF4E-containing 77S monosomal translating complexes that carried PAB1, but no signifi-
cant increase in the number of complexes containing eIF4G (Table 1). The observation that the
eIF4G to eIF4E ratio remains constant as translating complexes move from initiation to elon-
gation is consistent with the observations described for Flag-PAB1 pull downs. In that case, the
ratio of eIF4G to eIF4E also remained constant when initiation conditions were compared to
elongation conditions, as both factors dissociated from the monosomal translating complex to
the same relative extent (60% reduction) during the translation process (Table 1). Yet, even at
initiation the majority of the 77S monosomal translating complexes we observe with eIF4E--
Flag are lacking PAB1 and eIF4G. These observations are consistent with the model that
eIF4E-containing monosomal translating complexes contain poly(A) tails shorter than 24 A’s
and are moving towards translational cessation.

When the stoichiometry of factors in polysomes was analyzed following eIF4E-Flag pull
downs, much different results were obtained than with the 77S monosomal translating complex
(Table 1; Fig 4B). For polysomes after eIF4E-Flag pull downs, 74% of the ribosomes carried
PAB1, a number much greater than that found for monosomal translating complexes purified
with eIF4E-Flag (12%), indicating that most mRNA in such complexes contain poly(A) tail
lengths of at least 24 A’s. Moreover, 75% of eIF4E-Flag-containing polysomes carried eIF4G1 and
another 61% had eIF4G2, again greater than that found in monosomal translating complexes
(33%). This number of eIF4Gmolecules in polysomes is greater than the presumed number of
eIF4E present, suggestive of more than one eIF4G molecule per polysomal complex. While the
Discussion elaborates on other possible causes for this result (including minor inaccuracies in our
determination of absolute abundances), the fact that in Flag-PAB1 pull downs the ratio of eIF4E
to eIF4G for polysomes is actually 1:1 under both initiation and elongation conditions suggests
there is no error in calculating absolute abundances. This implies that the higher ratio of eIF4G to
eIF4E found in polysomes identified with eIF4E-Flag pull downs represents the presence of more
than one eIF4Gmolecule per mRNA undergoing translation. Even with the more conservative
interpretation of these results, the high number of eIF4Gmolecules present in eIF4E-containing
polysomes supports at least a 1:1 correspondence between eIF4E and eIF4G in polysomes. We
also found that in the eIF4E-Flag pull downs the number of ribosomes per mRNA present in our
pool of polysomes from 90S to 200S was greater (3.1 ± 0.27 ribosomes per mRNA, 15 samples)
than for those from Flag-PAB1 pull downs (2.4 ribosomes per mRNA). This result implies that
polysomal structure is more correlated with eIF4E/eIF4G presence than it is with poly(A) tails. It
should also be noted that as shown for the monosomal translating complexes there exists a signif-
icant pool of polysomes (about 25 to 40%) that appear to be substantially deadenylated and yet
still bound by eIF4E and eIF4G. This observation again supports the wide prevalence of the alter-
native eIF4E-eIF4G-mRNA closed-loop structure that has been observed in vivo [31].

For polysomes purified with eIF4E-Flag under initiation conditions, the relative abundance
of PAB1 and eIF4G remained about the same as observed under steady state growth condi-
tions, consistent with particular stabilization of eIF4E-eIF4G interactions in polysomal struc-
tures (Table 2). Again, eIF4G levels were greater than the abundance of eIF4E, suggesting that
in polysomes more than one eIF4G molecule per mRNA can be present. The observation that
the ribosomal density per mRNA was less at initiation of translation (2.1) compared to elonga-
tion conditions (3.1) is consistent with our initiation conditions identifying an early stage in
translation prior to full ribosomal occupancy of mRNA.
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PLOS ONE | DOI:10.1371/journal.pone.0150616 March 8, 2016 13 / 22



Translational complexes containing the SBP1 repressor lack poly(A)
tails and eIF4E/eIF4G
Because SBP1 was not found to be present in eIF4E-containing complexes, we addressed what
types of translational complexes Flag-SBP1 could pull down. SBP1 could bring down a 77S
complex (76.4S ± 2.68S, average of five determinations) that became reduced in abundance fol-
lowing translational cessation caused by glucose depletion (Fig 6A and 6B), indicating that the
77S complex is the monosomal translating complex [11]. The relative abundances of transla-
tion initiation factors present in this complex were determined and indicated that SBP1-con-
taining complexes displayed very low levels of PAB1 and eIF4E/eIF4G1/eIF4G2 in a complex
migrating around 80S (Fig 6C–6F; Table 1). In that the abundances of these low abundant
PAB1/eIF4E/eIF4G complexes migrating at 80S were unresponsive to glucose depletion, they
do not represent the 77S monosomal translating complexes. These results imply that SBP1 is
bound to mRNA complexes that are substantially deadenylated and which also lack eIF4E/
eIF4G. It was also observed that Flag-SBP1 failed to bring down significant levels of polysomal
complexes (Fig 6A and 6B), suggesting a role for SBP1 in a late stage of translational shut off.

Discussion
We have used AU-FDS analysis of GFP-tagged translation factors to quantitate the abundance
of translational factors in two types of translational complexes: the 77S monosomal translating
complex and polysomes. To increase the robustness of our analysis, three different handles
were used to purify these complexes: PAB1, eIF4E, and SBP1. Each of these handles offered
gateways to identifying different types of translational complexes. The identification of com-
plexes at two different stages of translation were also monitored, initiation and steady-state
elongation.

A number of major conclusions can be reached from these analyses. First, for polyadeny-
lated mRNA (poly(A) lengths greater than 23 A’s), both eIF4E and eIF4G dissociated from
translating monosomes and polysomes during the movement from initiation to elongation
(summarized in Fig 7). For example, 23% of the polyadenylated translating monosomal com-
plexes at initiation contained eIF4E whereas only 16% of the elongating monosomes contained
eIF4E. Similarly, for polysomal complexes, 38% of polyadenylated complexes contained eIF4E
at initiation compared to 27% during elongation. eIF4G dissociation patterns were similar to
that of eIF4E, implying simultaneous dissociation of these two factors As these closed-loop fac-
tors are important to the translation process, their loss, as ribosomes transit the mRNA, impli-
cate this transition as a key regulatory target.

Second, in the transition from the polysomal state to the monosomal state two observations
were made. Significant levels of eIF4E/eIF4G dissociated from the polyadenylated mRNA and
for either polyadenylated or deadenylated mRNA (the latter containing eIF4E), eIF4G particu-
larly dissociated more readily than did eIF4E (Fig 4A and 4B) (see also Fig 7). For example, for
polysomes containing PAB1 during elongation, 27% had eIF4E/eIF4G whereas only 16% of
translating monosomes had eIF4E and even less had eIF4G. The same pattern of results inhered
under initiation conditions. Moreover, relative to eIF4E, eIF4G preferentially dissociated during
the polysome to monosome transition: the eIF4E/eIF4G ratio was near 1:1 for polysomes but
was about 1.6:1 for polyadenylated monosomes and 3:1 for eIF4E-containing translating mono-
somes. Even under initiation conditions, monosomes were more depleted for eIF4G than they
were for eIF4E. Also, monosomal translating complexes containing eIF4E had six-fold less
PAB1 associated with them (and hence shorter poly(A) tails) than the corresponding polysomal
complexes. The combination of shorter poly(A) tails and the loss of eIF4E with even greater
losses of eIF4G indicate that translating monosomes would be significantly impaired for
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Fig 6. Analysis of Flag-SBP1 purified translation complexes. A. AU-A260 analysis was conducted instead of AU-A230 analysis for better detection of
complexes with this particular Flag-tagged protein. A-F. Growth conditions were as described in Fig 1. C. No flag refers to a strain lacking Flag-SBP1
plasmid. The differences between the no flag control and the Flag-SBP1 pull downs in panel C-F were not considered significant for eIF4E-GFP and
eIF4G2-GFP.

doi:10.1371/journal.pone.0150616.g006
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translation as compared to polysomes, suggestive that translating monosomes are nearing the
end of translation. A recent conclusion that monosomal translating complexes are slowed in the
initiation of translation relative to polysomal complexes [33] is consistent with our observation
of the particular depletion of eIF4E, even greater losses of eIF4G, and increased abundance of
deadenylated mRNA in monosomal complexes, all consequences that would be expected to
slow initiation processes. Moreover, since changes in poly(A) tail length and closed-loop factor
association with the mRNA critically regulate mRNA decay rates [21, 23–27], alteration in these
factors, as observed for monosomal translating complexes, would provide a mechanistic expla-
nation for the recent observation that mRNA associated with monosomal translating complexes
are particularly subject to enhanced rates of mRNA degradation [33].

Correspondingly, the observation that the eIF4E to eIF4G ratio for polysomes was at least
1:1 for either PAB1- or eIF4E-containing complexes implicates polysomal structure as particu-
larly stabilizing to the closed-loop structure involving eIF4E, eIF4G, and PAB1 or to that of just

Fig 7. Summary of dynamic changes in closed-loop factors in translating ribosomes dependent on
polysomal, polyadenylation, initiation, and elongation states.Only the translating ribosomes at initiation
containing closed-loop structures are summarized. For simplicity, the dynamic changes of closed-loop factors
in translating ribosomes containing other combinations of closed-loop factors are not represented, and these
changes in stoichiometry are explained more completely in the text. Also, based on our results only one
PAB1 is represented as binding to each poly(A) tail.

doi:10.1371/journal.pone.0150616.g007
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eIF4E and eIF4G. It is unclear, however, if this stabilization effect is due to a particular align-
ment of multiple ribosomes with the mRNA and the closed-loop factors that translating mono-
somal complexes cannot provide or to these closed-loop complexes promoting polysomal
structure, that is, by enhancing ribosome re-initiation on mRNA.

Third, the observation that eIF4G preferentially dissociated during the polysome to mono-
some transition suggests further that eIF4G association with translating complexes is a pre-
ferred target by translational repressors. This possibility is consistent with the identification of
several important translational regulators that bind to and possibly release eIF4G from trans-
lating complexes [34]. SBP1 has been suggested to be one of these translational repressors [34].
The role of eIF4E-binding proteins that compete with eIF4G interaction with eIF4E may also
play essential roles in aiding eIF4G-preferential dissociation from translation complexes [1].

Fourth, for both translating monosomes and polysomes, a significant number of complexes
lack PAB1 but still carry eIF4E/eIF4G. In that eIF4G can make RNA contacts important to
translation independent of its binding to PAB1 associated with the poly(A) tail [8–10, 35],
these eIF4E/eIF4G complexes appear to be forming a closed-loop structure that is highly com-
petent for translation even in the absence of PAB1. Such closed-loop structures would add an
additional level of redundancy to translational processes [1], especially for those mRNA whose
poly(A) tails have been shortened below the limit for competent PAB1 binding. Deadenylated
mRNA are found associated with translating polysomes [14] (consistent with the importance
of this alternative closed-loop structure to translation), and many mRNA are associated with
eIF4E/eIF4G but not with PAB1 [32].

Most importantly, as presented in Tables 1 and 2 and summarized in Fig 7, polysomal and
monosomal translating complexes that are essentially deadenylated (and which contain eIF4E
and eIF4G in presumably a closed-loop structure) are particularly insensitive to eIF4G loss as
ribosomes transit the mRNA from initiation to elongation in contrast to what is found for
polyadenylated mRNA. This implies that the eIF4E-eIF4G-mRNA closed-loop structure pro-
vides an increased stability not observed with the canonical eIF4E-eIF4G-PAB1-mRNA
closed-loop structure. The implications from this may be very significant. First, it has been
shown that a sizeable portion of translating mRNA are sensitive to eIF4G depletion even for
mRNA containing shortened poly(A) tails that presumably lack PAB1 [36]. These observations
support the importance of an eIF4E-eIF4G-mRNA closed-loop structure to translation of spe-
cific mRNAs that has been verified by in vivo analysis of a number of mRNA [31]. Second, our
data imply that significant and stable translation of deadenylated mRNA is occurring in the
cell, as shown previously [14]. Specific mRNA species, including those of the histone mRNAs
that are lacking poly(A) tails (which may be using an eIF4E-eIF4G-eIF3-SLIP1-mRNA closed-
loop structure) [37, 38], may be, in addition, particularly using the eIF4E-eIF4G-mRNA
closed-loop structure, again implying specific regulation of such structures. Third, in that cer-
tain viral infections, such as those mediated by HIV, coxsackieviruses, enteroviruses, and polio-
virus, particularly target PAB1 for degradation [39–41], the prevalence of an alternative closed-
loop structure would be a critical part of the translation process in both normal and disease
states in terms of regulation and the important resistance to and progression of these environ-
mental impacts.

Importantly, our data indicate that translational complexes are not monolithic. For exam-
ple, monosomal poly(A)-containing complexes substantially lacked eIF4E/eIF4G while those
that contained eIF4E predominantly lacked poly(A) tails. Polysomal poly(A)-containing com-
plexes also had a majority of complexes lacking eIF4E/eIF4G, whereas those containing eIF4E
were essentially of a closed-loop structure, containing eIF4G alone or with PAB1. These data
agree with other observations that the mRNA found in PAB1-purified material can be substan-
tially distinct from those found in either eIF4E- or eIF4G-purified material [19]. Moreover,
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those translation complexes that carried SBP1 were both predominantly deadenylated (poly(A)
lengths shorter than 24 A’s) and lacking in eIF4E/eIF4G.

In that SBP1-containing monosomes appear to be moving towards translational repression,
as they lack key closed-loop factors that augment translation, SBP1 might be playing a direct
role in this repression process. One role of SBP1 in translational repression has been suggested
to occur via SPB1 binding to eIF4G and affecting its translational abilities [34]. Whether SBP1
passively associates with mRNA lacking eIF4E/eIF4G or actively removes such components is
not clear from our results.

The analysis of SBP1 further hints at additional different pools of translation complexes.
While our results using Flag-SBP1 purified material suggest that SBP1 binding to the 77S
monosomal translation complex preferentially occurs on substantially deadenylated mRNA,
we also observed using Flag-PAB1-purified material that about 2.1% of the polyadenylated
monosomal translation complexes and 8.6% of the polyadenylated polysomes contain SBP1. It
is unlikely that these pools of translational complexes contain eIF4E/eIF4G because eIF4E-Flag
pull downs were deficient in SBP1 (Tables 1 and 2). Therefore, while the vast majority of trans-
lational complexes with SBP1 contain substantially deadenylated poly(A) tails, a small percent-
age of mRNA still have SBP1 present in both monosomal translation complexes and
polysomes that have longer poly(A) tails. Also, the abundances of both of these pools of
SBP1-containing polyadenylated translation complexes were increased during initiation rela-
tive to elongation. This suggests that SBP1 may be playing an additional role in initiation pro-
cesses that has not previously been detected. Whether this minority of mRNA that have both
SBP1 and poly(A) tails represent a specific class of mRNA species or are found evenly distrib-
uted across all cellular mRNA remains to be determined.

Our results also imply that more than one eIF4G is bound to each translating polysome in
that we observe actually more eIF4G than eIF4E in eIF4E-containing polysomal complexes.
Previous studies have suggested that multiple eIF4G molecules may be present on each mRNA
[42]. On the other hand, the current accepted model of the closed-loop structure is a 1:1 ratio
of eIF4E to eIF4G, although there is no conclusive evidence to firmly establish this ratio. In
that eIF4G can make contacts to mRNA separate from that of contacting PAB1 [8–10, 35], it
remains possible that polysomes may actually carry more than one eIF4G. This might be espe-
cially critical for those polysomes that lack PAB1 in which multiple eIF4G would provide
extended mRNA contacts and hence closed-loop structural advantages to translation. An alter-
native possibility is that we may have mis-estimated the absolute abundance of STM1 relative
to RPS4B. If this value were actually only 30% higher than we calculated, then we would have
obtained a nearly 1:1 ratio of eIF4G to eIF4E for polysomes identified with eIF4E-Flag. It is
also possible that the replacement at the chromosomal location of either eIF4G1 or eIF4G2 by
its corresponding GFP fusion could have altered the expression levels of the eIF4G1 and/or
eIF4G2 protein causing our ratio of eIF4G to eIF4E to be greater than expected. Considering
these alternatives, we favor the presence of more than one eIF4G molecule per translating poly-
some that also carries eIF4E because the ratio of eIF4G to eIF4E was exactly 1:1 for PAB1-con-
taining polysomes under both initiation and elongation conditions (Table 2). For these
polysomes involving polyadenylated mRNA there may not be a selective advantage for having
more than one eIF4G present per complex, as eIF4G would be closing the closed-loop structure
by contacting PAB1. In contrast, in that about 25% to 40% of eIF4E-containing polysomes lack
PAB1, it may be that for these polysomes multiple eIF4G per polysome may be required for
full stabilization of the closed-loop structure.

Although there may be some possible limitations (as described above) that inhere to
AU-FDS in providing an absolute accurate quantitation of components within translating
complexes, the reliability of the relative ratios of factors remains as well as do the conclusions
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derived from the changes of these ratios during translation. To clarify the changes we observed,
specific mRNA will need to be actively followed during translation. For example, poly(A)-con-
taining mRNA have previously been shown to be enriched in those mRNA that are highly
expressed in cells, including those in carbohydrate metabolism [19]. Also, monosomal translat-
ing complexes have recently been shown to be enriched in mRNA that are encoding key cellu-
lar regulatory components, such as protein kinases, protein phosphatases, and transcription
factors [33]. These observations imply that there are multiple factors that can influence transla-
tional progress and the association with the mRNA of key translational proteins. In that
AU-FDS has allowed the detection of the 77S monosomal translating complexes not previously
studied by conventional means, other novel translating complexes may be similarly detected by
AU-FDS dependent on which handles are used to purify these complexes, thereby enriching
the analysis of the actual translational complexes present in vivo.

Materials and Methods

Yeast strains and growth conditions
Yeast strains carrying GFP fusions to particular translational factors have been previously
described [11, 43]. All strains except for that containing eIF4G2-GFP were isogenic with the
genotypeMatα ura3 his3 leu2 met15, with the GFP fusion marked with the HIS3 gene [43].
The strain carrying eIF4G2-GFP was RP2384,Mata leu2-3,112, trp1 ura3-52 his4-539 cup1::
LEU2/PGK1pG/MFA2pG TIF4632-GFP::G418, and was provided by Roy Parker. Previous stud-
ies have shown no difference in AU analysis for strains isogenic to RP2384 and to the other
strains used [11]. All strains were transformed with one of the following plasmids as indicated
in the text: YC776 (Flag-PAB1 URA3), JC288 (RPL25A-Flag URA3), WX03 (Flag-SBP1 URA3),
or YC801 (eIF4E-Flag URA3). Cells were grown at 30°C to mid-log phase in synthetic complete
medium with appropriate amino acids as described before [18]. Generally, 200 mL of cells were
used for AU-FDS analyses. Cell lysis and Flag pull downs have been described [11]. Briefly,
yeast cells were lysed in ice-cold Tris buffer (pH 7.5, 0.05 M Tris-base, 0.15 M KCl, 2 mM
MgCl2, 10% glycerol, 1 mM PMSF, and a 1:500 dilution of Protease Inhibitor Cocktail (Sigma-
Aldrich P8215)). Generally, 1 mL of a 15 to 25 mg/mL crude extract was incubated with anti-
Flag affinity beads (Sigma-Aldrich) by gentle shaking for two hours at 4°C. After five washes
with 1 mL Tris buffer, the purified samples (500 μL) were eluted twice with 200 μg/ml of Flag
peptide (N-DYKDDDDK-C, Sigma) in Tris buffer (without the Protease Inhibitor Cocktail) at
4°C for 30 to 40 min. The protein concentration that was analyzed by AUC was in the 0.1 to
0.3 mg/mL range. Control experiments conducted with strains lacking a Flag-tagged protein
resulted in Flag-purified protein concentrations in the 0.02 mg/mL range following Flag pep-
tide elution.

For glucose depletion, cell pellets from the undepleted medium were washed and then resus-
pended in fresh medium lacking glucose for 10 min. Glucose re-addition experiments were
conducted by adding the requisite amount of glucose (2%) directly to cultures at the times indi-
cated in the text. Cycloheximide was added to growing cultures at a concentration of 100 μg/
mL as described [11] but was not present in the lysis buffer (pH 7.5) since a pH of greater than
7 is known to degrade cycloheximide. Control experiments found no difference in the results
when cycloheximide was included in the lysis buffer or when it was not.

AU analyses
Flag eluted samples (350 μL) were subjected to AU analysis by using A230 absorption or a fluo-
rescence detection system (AU-FDS) [44] to detect GFP-fusion proteins [11, 15]. All analytical
ultracentrifugation experiments were conducted at 20°C and at a rotor speed of 15,000 rpm.
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Twelve μm Spin60 centrifuge cells were used for the AUC experiments. At least 150 scans for
AU-FDS experiments were obtained and at least 75 scans for AU- A230 analysis. Data were ana-
lyzed by SEDFIT software as described previously [11]. Stoichiometric analyses were done on
samples that were split and run at the same time on two different AUC instruments, one for
AU-FDS analysis and one for AU-A230 or AU-A260 analysis as described in the text.
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