Free-electron lasers (FELs) can now generate temporally short, high power
x-ray pulses of unprecedented brightness, even though their longitudinal
coherence is relatively poor. The longitudinal coherence can be potentially
improved by employing narrow bandwidth x-ray crystal optics, in which case one
must also understand how the crystal affects the field profile in time and
space. We frame the dynamical theory of x-ray diffraction as a set of coupled
waves in order to derive analytic expressions for the spatiotemporal response
of Bragg scattering from temporally short incident pulses. We compute the
profiles of both the reflected and forward scattered x-ray pulses, showing that
the time delay of the wave τ is linked to its transverse spatial shift
Δx through the simple relationship Δx=cτcotθ, where
θ is the grazing angle of incidence to the diffracting planes. Finally,
we apply our findings to obtain an analytic description of Bragg forward
scattering relevant to monochromatically seed hard x-ray FELs.Comment: 11 pages, 6 figure