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Free-electron lasers (FELs) can now generate temporally short, high power x-ray pulses of unprece-

dented brightness, even though their longitudinal coherence is relatively poor. The longitudinal coherence

can be potentially improved by employing narrow bandwidth x-ray crystal optics, in which case one must

also understand how the crystal affects the field profile in time and space. We frame the dynamical theory

of x-ray diffraction as a set of coupled waves in order to derive analytic expressions for the spatiotemporal

response of Bragg scattering from temporally short incident pulses. We compute the profiles of both the

reflected and forward-scattered x-ray pulses, showing that the time delay of the wave � is linked to its

transverse spatial shift �x through the simple relationship �x ¼ c� cot�, where � is the grazing angle of

incidence to the diffracting planes. Finally, we apply our findings to obtain an analytic description of

Bragg forward scattering relevant to monochromatically seed hard x-ray FELs.

DOI: 10.1103/PhysRevSTAB.15.050706 PACS numbers: 41.50.+h, 41.60.Cr

I. INTRODUCTION

Free-electron lasers (FELs) based on self-amplified
spontaneous emission (SASE) [1,2] are a new source of
x rays whose brightness is many orders of magnitude larger
than those of more traditional third-generation synchro-
trons. Nevertheless, because SASE radiation is initialized
(or seeded) by the shot noise of the electron beam, it
comprises many temporal/longitudinal modes [3]. The
bandwidth of this chaotic light is limited to that of the
FEL process, which for high-gain FELs means that the
normalized frequency bandwidth �!=!� �, where � is
the FEL Pierce parameter that is typically between 10�4

and 10�3 for hard x-ray FELs.
While SASE FELs are limited to �!=!� �, one can

decrease the output bandwidth and increase the longitudi-
nal coherence by seeding the FEL with coherent radiation
from an external source. For hard x rays where an external
source is not available, it was proposed that one could
improve the longitudinal coherence through self-seeding—
by putting the SASE light through an x-ray monochroma-
tor one can obtain a narrow bandwidth source with which
to generate longitudinally coherent FEL radiation. The
primary difficulty with the scheme proposed in [4] was
that the monochromator delayed the radiation by several
picoseconds, which in turn required a long (� 40 m) mag-
netic chicane to delay the electron beam by the same
amount. One way of alleviating this is to use two separate
electron bunches [5].

Recently, an alternative seeding method was proposed
[6,7] that takes advantage of the time response of Bragg
forward scattering to generate the seed. In this scheme,
dubbed the ‘‘wake monochromator,’’ a single Bragg crystal
is employed in transmission to generate a delayed, mono-
chromatic signal (the wake) that is then used to seed the
FEL. Since the wake follows the SASE pulse by�10 fs, a
modest chicane is sufficient to induce the required delay in
the electron beam. The physics discussed in [6] was in
terms of a band-stop filter whose sharp spectral feature
naturally gave rise to a long, monochromatic temporal
signal that was delayed due to causality. Here, we give a
more thorough analysis of the process, obtaining analytic
expressions for the spatiotemporal shape and power of the
monochromatic wake generated by an incident SASE
pulse.
The temporal dependence of x-ray Bragg diffraction in

crystals has been studied previously in several publications
[8–14] by Fourier transforming the frequency domain
Bragg diffraction amplitudes, which are well known from
the classical dynamical theory of x-ray diffraction [15–19].
Here, our focus is on the spatiotemporal dynamics that play
an essential role in the efficacy of the FEL self-seeding. For
this reason, the problem is solved directly in time and space
using a system of space-time coupled wave equations.
We begin Sec. II by deriving the coupled wave system

relevant to symmetric Bragg scattering, and subsequently
solve for the field profiles in both reflection and trans-
mission. We show that the temporal profile consists of a
sequence of power maxima whose location depends on the
crystal extinction length � and grazing incidence angle �
in reflection, while in transmission the time delay also
varies inversely with the crystal thickness d. In addition,
the profiles are displaced along the transverse direction xo
by an amount proportional to the delay �: �xo ¼ c� cot�.
Finally, we use some well-known FEL physics to apply the
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theory of forward scattering to the FEL self-seeding
scheme, obtaining analytic results associated with the
wake monochromator of Ref. [6].

II. BRAGG SCATTERING IN THE TIME DOMAIN

We are predominantly interested in understanding the
basic physics and deriving a few simple analytic expres-
sions for the time response of Bragg forward scattering
from temporally short incident and laterally confined
pulses. To simplify the subsequent analysis and avoid
notational complications, we assume that the crystal is
symmetric, meaning that the crystal planes responsible
for Bragg scattering are parallel to the crystal surface.
This restriction is most relevant to the FELmonochromator
we subsequently study. We take the optical axis of the
incident radiation to make an angle � from the surface as
shown in Fig. 1(a). Maxwell’s wave equation for the elec-
tric field E in the crystal is�

1

c2
@2

@t2
� r2

�
Eðr; tÞ ¼ � 4�

c2
@J

@t
� rðr �EÞ; (1)

where J is the current density induced in the crystal by the
radiation and c is the speed of light. The linear response of
the medium is given by the crystal polarizability �ðrÞ.
Denoting the polarization components by a superscript s,
in the linear approximation for x-ray energies far above
any atomic resonances we have

Jsðr; tÞ ¼ �
Z

d!e�i!t i!

4�

X
s0
�ss0 ðrÞEs0 ðr; !Þ

¼ 1

4�

X
h;s0

�ss0
h eih�r

@

@t
Es0 ðr; tÞ; (2)

where in the second line we have used the periodicity of the
crystal to expand the polarizability � as a Fourier series.
We decompose the electric field vector as a sum of two
orthogonal polarizations, E ¼ E�ê� þ E�ê�, with ê� par-
allel and ê� perpendicular to the scattering plane. In this

case, the nondiagonal components (namely, �ss0
h for s0 � s)

vanish and the polarization components decouple. For
simplicity, we assume � polarization and subsequently
drop the polarization dependence.
The electronic polarizability in (2) strongly couples

electromagnetic waves whose wave vectors differ by h,
which results in strong Bragg reflection. We assume that
this condition is satisfied for one reciprocal lattice vector,
which in the symmetric geometry implies that h ¼ �hẑ.
Since the �h are assumed to be time independent, it is
natural to take a Fourier transform with respect to t; how-
ever, our goal is to compute the temporal response, and we
find it more convenient to remain in the time domain.
Instead, we introduce the slowly varying eikonal field
amplitudes associated with two interacting waves, writing
the electromagnetic wave as

Eðx; z; tÞ ¼ e�ick0teik0½z sin�þx cos��

� ½E0ðx; z; tÞ þ e�ihzEhðx; z; tÞ�; (3)

where ck0 is the carrier frequency and ðk0 sin�; 0; k0 cos�Þ
is the reference wave vector. We assume that the field
envelope functions have slow spatiotemporal variations
with respect to the carrier frequency ck0, with��������@

@t
lnE0;h

��������� ck0;

�������� @

@z
lnE0;h

��������� k0 sin�: (4)

The reference carrier frequency ck0 can be freely chosen
provided that (4) hold, with any additional slow temporal
dependence being accounted for by E0;h; we choose k0 to
satisfy Bragg’s condition: k0 sin� ¼ h=2.
We have oriented our axes such that the scattering plane

defined by the reciprocal lattice vector and the optical axis
lie in the ðx; zÞ plane, and we assume that the crystal is
uniform in the ðx; yÞ plane. Thus, the fundamental field
solutions are plane waves in the directions parallel to the
crystal surface. For simplicity we will neglect the trivial y
dependence, with the general electric field E being written
as the superposition

E0;hðx; z; tÞ ¼
Z

dqeiqxE0;hðq; z; tÞ: (5)

We now use the slowly varying assumption (4) to reduce
the second-order wave equation (1) to two first-order equa-
tions for the field amplitudes E0 and Eh, an approach that
was first developed in this context by Takagi [20,21]. Since
we assume that the crystal lattice is perfect, we find it
convenient to use z and t as the relevant coordinates rather
than the standard spatial coordinates along the wave vec-
tors (see, e.g., [18,19,22,23]); thus, our approach is similar
to those of [24,25]. We insert the forms (3) and (5) into the

FIG. 1. Geometry of Bragg scattering. Part (a) shows that the
incident pulse travels along the optical axis that makes an angle
� with respect to the crystal surface. Part (b) plots the geometry
in the characteristic coordinate plane � 0-�0, with the crystal
entrance and rear surfaces located at � 0 ¼ �0 (the line AQ) and
� 0 ¼ �0 � d (the line CP), respectively. We also include the
integration contours ABQ and ACPQ that are used to obtain the
solution for the reflected and transmitted waves.
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wave equation (1), and drop the term �rðr �EÞ since the
field remains approximately transverse in the crystal. By
neglecting higher-order derivatives of the field amplitudes
and matching fast phases, we obtain the following set of
slowly varying equations:�

@

@ct
þ sin�

@

@z
þ ik0

�
~	0 � �0

2

��
E0 ¼ ik0� �h

2
Eh (6)

�
@

@ct
� sin�

@

@z
þ ik0

�
~	h � �0

2

��
Eh ¼ ik0�h

2
E0; (7)

where for convenience we define � �h � ��h. We have
attached tildes to ~	0;h because, while they appear similar

to the usual deviation from Bragg’s condition 	0;h, they

have a slightly different definition and interpretation in the
present context. ~	0 represents the incidence wave vector’s
difference from the vacuum condition due to q � 0, while
~	h is the deviation of the reflected carrier wave from
Bragg’s condition, with

~	 0 � 1

2k20
½k20 � k20sin

2�� ðk0 cos�þ qÞ2� (8)

~	 h � 1

2k20
½k20 � ðk0 sin�� hÞ2 � ðk0 cos�þ qÞ2�; (9)

our choice k0 sin� ¼ h=2 implies that

~	 0 ¼ ~	h ¼ q

k0
cos�þ q2

2k20
� ~	: (10)

Note that the central wave number k0 and the crystal
parameters �0, �h, and � �h are all functions of angle �.
To solve (6) and (7), we introduce the characteristic coor-
dinates,

� � 1
2ðct sin�� zÞ; � � 1

2ðct sin�þ zÞ; (11)

and the reduced field amplitudes A0 and Ah via

E 0 � e�ik0ð~	��0=2Þð�þ�Þ= sin�A0 (12)

E h � e�ik0ð~	��0=2Þð�þ�Þ= sin�Ah: (13)

Then, the coupled wave system (6) and (7) reduces to

@A0

@�
¼ ik0� �h

2 sin�
Ah;

@Ah

@�
¼ ik0�h

2 sin�
A0: (14)

Here, we see that if the coupling �h ! 0, the forward-
going wave A0 is a function of � only, while the reflected
wave Ah is a fixed function of �. In the crystal, the two
waves interact as shown, with each obeying the associated
second-order equation,

@2

@�@�
A ¼ � k20� �h�h

4sin2�
A � ��2

�2
A; (15)

where the extinction length � � ð2�=k0Þ sin�= ffiffiffiffiffiffiffiffiffiffiffiffi
�h� �h

p
is

approximately independent of the angle � for any given

reflection [this can be seen by using �h � <ð�hÞ � sin2�
and k0 ¼ h=ð2 sin�Þ].
The linear system (14) can be solved for specified

boundary conditions using the Riemann method as was
done in [22], and which is reviewed in, e.g., [19] and in the
Appendix. For Bragg scattering, the reduced fields satisfy
(14) subject to the constraints that the forward-going wave
A0 is a prescribed function along the front crystal surface
at z ¼ 0 while the reflected wave vanishes along the rear
surface defined by z ¼ d. In terms of the characteristic
coordinates shown in Fig. 1(b), we have

A 0jAQ ¼ Ainc; AhjCP ¼ 0: (16)

In the following two sections we solve the system (14)
subject to (16) assuming a Gaussian incident pulse that is
temporally short and confined laterally in space. We will
find relatively simple, approximate analytic expressions
for the electric field when we can neglect multiple scatter-
ing of the waves off the crystal surfaces, meaning that we
only consider the time interval following the main pulse
that is smaller than ð2d=cÞ= sin�. For a crystal of thickness
d ’ 0:1 mm this time interval is ’ ð300= sin�Þ fs. The field
at longer times can be built up by inserting these solutions
into the Riemann integrals in an iterative manner [22,26],
but this is beyond the scope of the present study.

A. Bragg diffraction: The reflected wave

In the Appendix we use Riemann’s method to show that
on the front crystal surface the reflected field is given by

AhðQÞ ¼
Z Q

A
d� 0

ik0�h

2 sin�
Aincð� 0; � 0ÞRhð�; �; � 0; � 0Þ; (17)

where Ainc is the initially incident wave and the
Riemann function Rh for the reflected wave satisfies the
adjoint equation associated with the (formally self-adjoint)
system (14),

@2

@�0@� 0
Rhð�; �; � 0; �0Þ ¼ ��2

�2
Rhð�; �; � 0; �0Þ; (18)

along with the auxiliary conditions

@Rh

@�0

��������AQ
¼ 0;

@Rh

@� 0

��������BQ
¼ 0; RhðQÞ ¼ 1: (19)

The Riemann function satisfying (18) and (19) is given by
(A9) [22]; for the solution (17) we need Rh along the front

crystal surface defined by the line AQ; here, we have
�0 ¼ � 0 with point Q located at � ¼ � , for which

Rhð�; � ; � 0; � 0Þ ¼ 2
J1½2�ð� � � 0Þ=��
2�ð� � � 0Þ=� : (20)

The physical electric field amplitude of the reflected
wave can be obtained by applying the field definitions
(12) and (13) to the solution (17) once we specify the
incident field. We will be interested in the response from
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a temporally short incident wave directed along the optical
axis shown in Fig. 1(a). We model the incident wave by a
Gaussian field both longitudinally and transversely that
propagates along the optical axis defined by ẑ sin�þ
x̂ cos�:

Einc ¼ 1ffiffiffiffiffiffiffi
4�

p
��

exp

�
� 1

4�2
�

½ct� ðz sin�þ x cos�Þ�2
�

� exp

�
� 1

4�2
x

ðx sin�� z cos�Þ2
�
:

If the incident pulse length �� is much shorter than the
penetration length, we can approximate the temporal pro-
file as a delta function; taking the limit �� ! 0 and using
the definitions (5), (12), and (13), the incident field along
the crystal surface z ¼ 0 in terms of the characteristic
coordinates is

Ainc ¼ 1

2�

Z
dx0e�iqx0eik0ð2~	��0Þ� 0= sin�Einc

! 1

2�

Z
dx0e�iqx0eik0ð2~	��0Þ� 0= sin�e�x02sin2�=4�2

x

� sin�

2

ð� 0 � x0 sin� cos�=2Þ: (21)

Upon inserting the initial condition (21) into the solution
forAh (17), the integral over �

0 can be trivially performed.
To get the physical reflected field Eh requires the inverse
Fourier transform as indicated by (5). The transform with
respect to q is a Gaussian integral that can be taken analyti-
cally, so that

Eh ¼ ik0�h

2
ffiffiffiffiffiffiffi
2�

p
Z

dx0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ik0
ct� x0 cos�

s
ei�0k0ðct�x0 cos�Þ=2

� e�x02sin2�2=4�2
x exp

�
ik0ðx0sin2�� xþ ct cos�Þ2

2ðct� x0 cos�Þ
�

� J1½� sin�ðct� x0 cos�Þ=��
� sin�ðct� x0 cos�Þ=� : (22)

Equation (22) expresses the reflected wave from the tem-
porally short incident field (21). Before attacking the in-
tegral, we must first relate the coordinates ðx; tÞ to those
along the new optical axis defined by the reflected wave.
As depicted in Fig. 2, these comprise the coordinate trans-
verse to the optical axis xo and the orthogonal time delay �
defined at z ¼ 0. Note that the time difference is defined
such that lines of constant � are parallel to the xo axis.
Since the time t is measured with respect to lines of
constant z, the reflected wave optical axis coordinates are
related to ðx; tÞ via x ¼ xo= sin� and ct ¼ c�þ xo= tan� as
shown in Fig. 2.

To make further analytic progress, we can approximate
this integral using the method of stationary phase.
Computation of the stationary points is greatly simplified
if we assume that j�0j � sin4� and that the transverse size
�x is sufficiently large. Specifically, we assume that

k0�
2
x 	 c�

sin2�

1

k0�x

� tan�sin2�: (23)

Physically, the first condition means that we consider
distances behind the incident pulse c� that are much less
than the Rayleigh range associated with the beam spot size
projected onto the crystal surface, while the second condi-
tion is equivalent to requiring the beam angular divergence
is much less than sin3�; these conditions are typically well
satisfied for all but extreme grazing angles. Under these
assumptions, the stationary point is

x0s ¼ x� ct cos�

sin2�
¼ xo

sin�
� c� cos�

sin2�
; (24)

and the reflected wave is given by

Eh ¼ ik0�h

2sin2�
ei�0ck0�=2sin

2� J1½�c�=ð�sin�Þ�
�c�=ð�sin�Þ

� exp

�
� 1

4�2
x

½ðxo � c� cot�Þ2�
�
: (25)

From (25), the temporal profile of the reflected wave
oscillates over the time scale ð�=cÞ sin� according to the
Bessel function J1; we graph the sequence of power peaks
associated with jJ1ðyÞ=yj2 in Fig. 3(a). Additionally, the
field profile is laterally displaced along xo as the time delay
increases according to xo ¼ c� cot�. We plot a specific
example of this behavior in Fig. 3(a) for the C(004) reflec-

tion at 56.85
, for which � � 22:8 �m and �0 � 1:5 �A.
Figure 3(b) plots the reflected amplitude jEhj to more
clearly identify the trailing pulses, which are displaced as
predicted by Eq. (25). In the next section we apply a similar
analysis to forward scattering. We will show that, while the
behavior of the transverse envelope is quite similar, the
temporal profile of Bragg forward scattering is distinct, in
that it depends importantly on the crystal thickness d.

FIG. 2. Geometric relationship between the crystal coordinates
ðx; ctÞ and the optical axis coordinates ðxo; c�Þ for both the
reflected (top) and transmitted (bottom) wave.
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B. Bragg forward scattering

Having found the spatiotemporal dependence of the
reflected wave, we now turn to obtaining the transmitted
wave E0 at the rear surface of the crystal. The solution can
again be determined by Riemann’s method; restricting
ourselves to d= sin� � ct � 3d= sin�, in the Appendix
we show that the transmitted wave is given by

A0jP¼R0A0jQ�
Z Q

A
d� 0R0ð�;�;� 0;� 0Þik0� �h

2sin�
Ah

�
Z Q

A
d� 0A0ð� 0;� 0Þ @

@� 0
R0ð�;�;�0;� 0Þj�0¼� 0 ; (26)

where the Riemann function that satisfies the relevant
boundary conditions (A12) and the adjoint equation (18)
is [22]

R0ð�; �; � 0; �0Þ ¼ J0½2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð� � � 0Þð�� �0Þ

p
=�� þ � � � 0

�� �0

� J2½2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið� � � 0Þð�� �0Þp

=��: (27)

Along the exit crystal surface CP we have � ¼ � þ d, so
that the second integrand in (26) involves

@R0

@� 0
¼ 2�2d

�2

J1½2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið� � � 0Þð� þ d� � 0Þp

=��
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið� � � 0Þð� þ d� � 0Þp
=�

: (28)

The first term in (26) is merely the initial condition
evolved along the characteristics, which is not the focus
of this study, and we will henceforth drop it from our
expressions. Of the remaining two terms, the one on the
second line in (26) is generated by the reflected wave that is
directly excited by the incident pulse, which can be shown

to dominate the second term from the first line in the
following way. Since A0 / 
ð� 0 � x cos� sin�=2Þ, upon
integration the second line scales as the product of 1=�2

and the x-ray path length through the crystal d= sin�. Using
the expressions (17) and (21) for Ah, it is easily shown
that the integral on the first line in (26) scales as 1=�2

times a highly oscillatory function integrated over the time
ct; for the times ct & d= sin� that we are considering, the
first line of (26) is therefore negligible with respect to that
of the second line.
Thus, the transmitted wave of interest is given by the

second line in (26). An expression for the transmitted
electric field envelope is obtained by proceeding as we
did for the reflected wave; we use the definitions of the
reduced fields (12) and (13), insert the function (28), and
use the initially short incident pulse (21). The integration
over � 0 is then trivial, and we find

E0jP ¼ � sin�

4�

Z
dx0e�iqx0e�x02sin2�=4�2

x

� e�ik0ð~	��0=2Þð2�= sin�þd= sin��x0 cos�Þ

� @R0

@� 0

��������� 0¼ðx0=2Þ cos� sin�
: (29)

While this expression is difficult to interpret, we can make
further progress by considering the field E0 in physical
space. We apply

R
dqeiqx to both sides of (29); again, the

integral over q is a Gaussian one that can be taken analyti-
cally, leading to

E0jP¼��2dsin�

�2

Z
dx0

ffiffiffiffiffiffiffiffiffiffiffi�ik0
p

e�x02sin2�=4�2
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�½ðdþ2�Þ=sin��x0cos��p exp

�
ik0½x0sin2��xþð2�þdÞcot��2

2½ðdþ2�Þ=sin��x0cos�Þ�
�
ei�0k0½ðdþ2�Þ=sin��x0 cos��=2

�J1½�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2��x0cos�sin�Þð2dþ2��x0cos�sin�Þp

=��
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2��x0cos�sin�Þð2dþ2��x0cos�sin�Þp
=�

: (30)

FIG. 3. (a) The temporal power profile�jJ1ðyÞ=yj2 of the Bragg reflected wave as a function of argument�c�=ð�sin�Þ. (b) Reflected
field magnitude jEhj from the (004) Bragg reflection of diamond at an incidence angle � ¼ 56:86
 when the incident wave has
�x ¼ 10 �m. The wave is displaced transversely to the optical axis by an amount proportional to the time elapsed, with xo ¼ c� cot�.
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Finally, the expression (30) should be written in term of the
coordinates along the optical axis illustrated in Fig. 2,
where xo again labels the transverse position with respect
to the transmission optical axis, while � is the relative time
along the axis. From the figure, we see that at the rear
surface z ¼ d we have x ¼ ðxo þ d cos�Þ= sin�, and
2�= sin� ¼ ct� d= sin� ¼ c�þ xo= tan�; these coordi-
nates will be used in the final results.

While the expression (30) does not look any more
appealing than (29), we can begin to make sense of it by
considering the limit of exact backscattering, i.e.,
� ! �=2, in which case the integral over x is merely the
Gaussian integral associated with paraxial evolution.
Furthermore, the transverse crystal coordinate equals its
optical axis counterpart x ¼ xo, while 2� ¼ c�. In the limit
of exact backscattering � ¼ �=2, (30) simplifies to

E0jP ¼ �d�2

�2
ei�0k0ðdþc�Þ=2 exp½� x2o

4�2
x�iðdþc�Þ=k0�

1� iðdþ c�Þ=2k0�2
x

� J1½�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�ð2dþ c�Þp

=��
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�ð2dþ c�Þp

=�
: (31)

In this form, the output field has a simple physical
interpretation. The first factor shows that the amplitude
scales as the product of the propagation distance and
square of the coupling �=�, since the incident wave
must effectively be first scattered into the reflected wave
and then back to the transmitted to produce the trailing
pulse. Additionally, the amplitude is altered by both the
phase difference and loss due to the crystal index of
refraction and by the natural transverse spreading of the
pulse: in the limit k0�

2
x 	 ðdþ c�Þ, namely, that the

Rayleigh range is much greater than the total propagation

distance dþ c�, it yields the transverse envelope e�x2o=4�
2
x .

Finally, the second line gives the transmission temporal
profile or the ‘‘wake’’ of the incident pulse.
We plot the temporal power profile �jJ1ðyÞ=yj2 as a

function of �c�=� for two crystal thicknesses in Fig. 4(a).
Doubling the crystal thickness from 5� to 10� decreases
the time between maxima while increasing the peak power
of each pulse by a factor of 4. Note that the entire domain
of the graph lies in the region of the first reflection maxi-
mum plotted in Fig. 3(a); the characteristic time scale of
the forward-scattered wave is much shorter than that of the
reflected wave for d * �. Additionally, the temporal pro-
file of forward scattering depends strongly on the crystal
thickness d.
Equation (31) implies that the successive power

maxima of the transmitted field are given by the maxima
of the function jJ1ðyÞ=yj, which correspond to the zeros of
the Bessel function J2ðyÞ. We denote the positions of the
jJ1ðyÞ=yj maxima by J n for integer n � 0, with the n ¼ 0
peak at J 0 ¼ 0 and the first trailing maximum of jJ1ðyÞ=yj
given by y ¼ J 1. Setting the argument �2c�ð2dþc�Þ=
�2¼J 2

N , we find

�max
n ð� ¼ �=2Þ ¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ J 2

n�
2

�2

s
� d

c
� J 2

n

2�2

�2

cd
(32)

if the crystal thickness is much greater than the extinction
length, d 	 �. The time delay of the power maxima
(32) are inversely proportional to the crystal thickness d.
This can be understood in a heuristic manner by consider-
ing Fig. 4(b). An initially sharp incident wave E0, indicated
in Fig. 4(b) by the thick, red vertical arrow at � ¼ 0,

FIG. 4. (a) Time dependence of the Bragg forward diffraction intensity for a crystal thickness that is 5 and 10 extinction lengths. The
position of first intensity maximum scales as 1=d while its peak power / ðd= sin�Þ2. Note that in both cases there are several
transmission maxima over a time interval for which Fig. 3(a) shows only one single reflection peak. (b) Illustration of the coupled
forward and reflected modes in Bragg diffraction. The crystal surfaces are shown as dotted lines with unit slope. The initial pulse
excites a reflected wave (blue arrows) that propagates along the � characteristic, which in turn excites forward-scattered waves (dotted
red arrows) that move along �. The first transmission maximum is determined by the coupling area shaded green, meaning that the
time delay of the first maximum scales inversely with d. (c) Time dependence of Bragg forward diffraction intensity, plotted as a
function of t= sin� for the (004) reflection in diamond with d ¼ 0:15 mm. The power maxima line up on the normalized t= sin� scale,
with the peak scaling as ðd= sin�Þ2. The central wavelength �0 � ð1:79 �AÞ sin�.
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generates a reflected wave shown schematically as
the blue horizontal lines directed along the � character-
istics. As the reflected wave amplitude grows, it in turn
couples to the transmitted wave (the red dotted lines),
which increases its amplitude as it extracts energy from
Eh. In this way, energy alternates between the reflected and
transmitted waves, as evidenced by the oscillatory profiles
(25) and (31). The position of the first transmission maxi-
mum, for example, should be given by the integrated
amplitude of the reflected wave just behind the incident
pulse, which is proportional to the interaction volume
given by the green shaded area in Fig. 4(b). If we denote
the first transmission maximum as �max

1 , we have d�max
1 ¼

constant or �max
1 � 1=d.

Equation (31) is rigorously valid but limited to � ¼ �=2.
We derive an approximate expression for (30) that is valid
for arbitrary � excluding grazing incidence by again using
the method of stationary phase. First, we insert the optical
axis coordinates shown in Fig. 2, which along the exit
surface yield the replacements x ¼ ðxo þ d cos�Þ= sin�
and 2�= sin� ¼ c�þ xo= tan�. Next, we again assume
that j�0j � sin4�, and that the transverse spot size is suffi-
ciently large so that the Rayleigh range associated with the
projected beam size is much shorter than the propagation
length through the crystal, k0�

2
xsin

2� 	 ðd= sin�þ c�Þ.
Finally, we assume that the transverse size of the beam
projected onto z is much smaller than the crystal thickness,
so that j�x cos�j � d. These conditions typically apply for
all but small grazing incidence angles � � 1, and when
satisfied result in a stationary point that is identical to that of
Bragg reflection (24): x0s ¼ ðxo � c� cot�Þ= sin�. Thus, the
transmitted field amplitude is

E0jP ¼ � d�2

�2 sin�
ei�0k0ðdþc�= sin�Þ=2 sin�

� exp

�
� 1

4�2
x

½ðxo � c� cot�Þ2�
�

� J1½�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�ð2d= sin�þ c�=sin2�Þp

=��
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�ð2d= sin�þ c�=sin2�Þp

=�
: (33)

From (33), we see that the longitudinal time profile is nearly
the same as that for exact backscattering (31) with d !
d= sin� [this identification is exact for delays � � ðd=cÞ�
sin� if we assume that the Rayleigh range is sufficiently
long]. Additionally, we recall that the extinction length� is
nearly independent of �, so that the temporal envelope
�J1ðyÞ=y can be obtained from that evaluated at � ¼ �=2
Eq. (31) by replacing � ! �= sin�. Thus, the maxima at
arbitrary � can be written in terms of those at � ¼ �=2
Eq. (32) via

�max
n ð�Þ ¼ �max

n ð�=2Þ sin� (34)

with, when d 	 J n�=�,

�max
n ð�=2Þ ¼ J 2

n

2�2

�2

cd
: (35)

We show in Fig. 4(c) the time response of Bragg forward
diffraction at three different incidence angles from the
(004) Bragg reflection in diamond. The crystal thickness
has been fixed at d ¼ 0:15 mm, and we plot the power
profiles as a function of t= sin�. The position of the inten-
sity maxima is invariant on the normalized time scale,
while the power scales as ðd= sin�Þ2.
The temporal profile is modified as indicated in (34),

while (33) also shows that the transverse envelope is
translated from the optical axis at xo ¼ 0 by the amount
c� cot�. This shift can be related to the distance along x0
that the reflected wave travels during the time �. We show
this geometrically in Fig. 5(a): much like how the delay
arises because of the induced Bragg scattering in the
crystal, the representative rays are now directed along
both z and x, so that as energy oscillates between waves
the field is displaced in xo. Here, the relevant shift can be
found by comparing the times � and transverse coordinates
xo after the rays propagate along the characteristics some
fixed distance. From Fig. 5(a), we see that, while the
incident ray propagates a distance D, the reflected wave
is displaced in time by an amount c� ¼ D�D cos2� and
transversely by xo ¼ D sin2�. Taking the ratio, we find that
corresponding to a time delay �, we have the displacement
xo ¼ c� sin2�=ð1� cos2�Þ ¼ c� cot�.
We show the spatiotemporal profile of a Bragg forward-

scattered pulse from the C(004) crystal at � ¼ 56:86
 in
Fig. 5(b). We assume a temporally short input pulse with
rms transverse width �x ¼ 10 �m. Again, we plot the
magnitude jE0j to more clearly show all the trailing pulses,
and we scale the amplitude so that the first delayed maxima
has unit magnitude. The temporal profile closely mirrors
that shown of the same crystal in Fig. 4(c), while each
subsequent pulse is more distantly displaced from the
optical axis xo ¼ 0. The cyan line is drawn along the
theoretically predicted line xo ¼ c� cot�, which closely
predicts the transverse displacement. In this case, the first
trailing pulse is displaced from the optical axis by a small
amount�5 �m, while the second maxima is shifted by an
amount �13 �m, which is of the order of the rms width.
Interestingly, at very short times the time dependence of

forward Bragg diffraction closely resembles that of nuclear
resonant forward scattering of x rays from Mössbauer
nuclei. Indeed, at short times c�= sin� � 2d, Eq. (33)
takes the form

E0jP � d�2

�2 sin�

J1½�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c�d= sin�

p
=��

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c�d= sin�

p
=�

: (36)

This temporal envelope is equivalent to that of nuclear
forward scattering [27] if we define the characteristic
time scale in terms of the inverse energy width of the
nuclear resonance � rather than the extinction length �
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relevant to Bragg diffraction. Furthermore, in both cases
the sample thickness d plays an essential role due to
multiple scattering [28], implying that nuclear forward
scattering from Mössbauer nuclei could in principle be
used for FEL seeding. However, since the relevant band-
width is & 10�5 that of diffraction (e.g., the 14.4 keV
resonance in 57Fe has � ’ 5 neV), there will typically be
far too few SASE photons delayed by a too long a time for
this to be applicable in practice.

III. MONOCHROMATIC POWER FOR
FEL SELF-SEEDING

We have seen that Bragg forward scattering gives rise to
a sequence of delayed power maxima from temporally
short incident radiation. Reference [7] proposed using the
first trailing maximum to seed an FEL at hard x-ray wave-
lengths: an initially short SASE pulse generates the radia-
tion wake depicted in Fig. 5(b) that is then used to
coherently seed the FEL interaction in downstream undu-
lators. In the preceding discussion, we computed the spa-
tiotemporal field profile generated by an initially short and
coherent incident pulse; since SASE is temporally inco-
herent (chaotic light), however, some additional consider-
ations are necessary to determine the relevant radiation
seed power.

The longitudinal structure of SASE can be well modeled
as a sum of Gaussian modes that have random temporal
positions and phases. For M longitudinal modes, we ap-
proximate the SASE field as

EincðtÞ ¼ UðtÞXM
j¼1


jffiffiffiffiffiffiffi
4�

p
��

e�c2ðt�tjÞ2=4�2
� ; (37)

where UðtÞ is the total envelope of the field determined by
the electron beam current and FEL gain, tj are a random set

of times, and 
j are a set of random complex amplitudes

such that Mhj
jj2i=�� is proportional to the ensemble-

averaged SASE energy. The temporal width �� is dictated
by the FEL physics while the number of modes M is
determined by �� and the characteristic length of the
envelope UðtÞ that we denote Lpulse. Assuming that �� is

sufficiently short, the incident pulse (37) generates a trail-
ing electromagnetic field that is merely a sum of M wakes
discussed previously, with each one beginning at the time
tj and having the relative complex amplitude given by 
j.

First, we consider the case when the duration of the
incident SASE length Lpulse is much shorter than the char-

acteristic time scale of the trailing wake, which is the
typical situation for self-seeding of few-fs pulses. In this
case, the M Bragg forward-diffracted beams generated by
(37) have the same temporal shape, but differ with random
phases and amplitudes. The ensemble-averaged total
power in the trailing pulse scales as M times the average
power in an individual wake. If we consider the power
maxima of (33), the ratio of the ensemble-averaged power
in the first trailing seed to that in the SASE is

Pmax
seed

Ppulse
¼ 4��2

�M

�
�2d

�2 sin�

J1ðJ 1Þ
J 1

�
2
; (38)

where again J 1 is the position of the first maxima of
jJ1ðyÞ=yj with y > 0. The temporal width of each mode
and number of modes is dictated by the FEL process, and
as such will depend on the electron beam quality and
profile. In order to get an approximate expression, we use
the analytic results that are available for a long electron
beam with zero initial energy spread [3,29]. In this case,

FIG. 5. (a) Illustration of the coupled forward and reflected modes in the crystal. As explained in the text, a forward-scattered ray is
displaced �x ¼ D sin2� laterally while delayed by the time � ¼ Dð1� cos2�Þ=c; eliminating D, we find that �x ¼ c� cot�.
(b) Spatiotemporal dependence of the electric field magnitude in forward Bragg diffraction. We chose the (004) reflection from a
0.1-mm-thick diamond crystal at an incidence angle � ¼ 56:86
 (�0 ¼ 1:5 �A), while the incident pulse has an rms width �x ¼
10 �m. The temporal dependence can be compared with that plotted in Fig. 4(c), while the lateral displacement �xo ¼ c� cot� is
emphasized by the cyan arrow.
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the rms width of a SASE mode is related to the FEL

coherence length Lcoh by �� ¼ Lcoh=
ffiffiffiffiffiffiffi
3�

p
while the num-

ber of longitudinal modes for a pulse of total length Lpulse is

M ¼ Lpulse=Lcoh; inserting this into (38) yields

Pmax
seed

Ppulse
� 4

3
LcohLpulse

�
�2d

�2 sin�

J1ðJ 1Þ
J 1

�
2
: (39)

Finally, the SASE coherence length generated by an elec-
tron beam of vanishing energy spread is

Lcoh ¼ �0

6�

ffiffiffiffiffiffiffi
NG

2�

s
; (40)

where NG is the number of gain lengths in the upstream
undulator. Combining (38) and (40), we have

Pmax
seed

Ppulse

�
ffiffiffiffiffiffiffiffiffiffi
2NG

�

s
�0Lpulse

9�

�
�2d

�2 sin�

J1ðJ 1Þ
J 1

�
2

� 0:0058

ffiffiffiffiffiffiffi
NG

2�

s
�0Lpulse

6�

�
�2d

�2 sin�

�
2
: (41)

Because of the various approximations made, we only
expect (41) to be correct to within a factor of 2 or so.
Nevertheless, this yields a useful estimate and has the
appropriate scaling when Lpulse is much less than the

time scale of variation of the forward Bragg diffraction
signal; if we use (34) and (35) to eliminate the crystal
parameters in favor of the delay, (41) becomes

Pmax
seed

Ppulse
�

ffiffiffiffiffiffiffi
NG

2�

s
�0Lpulse

6�

1

ðc�1Þ2
¼ LcohLpulse

ðc�1Þ2
: (42)

For example, for the approximate parameters proposed in
[30] for use at the Linac Coherent Light Source (LCLS),
the low charge operation has Lpulse � 1 �m and after the

suggested interaction length we find that Lcoh � 0:07 �m;
for a 0.1-mm diamond crystal at an angle � ¼ 56:86
, the
C(004) planes have �2d=ð�2 sin�Þ � 2:4 �m�1, and (41)
implies that a 1-GW SASE pulse would produce a seed
whose ensemble-averaged peak power is 2.3 MW; the
same result obtains from (42) for the associated delay �1 �
18 fs. These estimates compare quite favorably with the
quoted result of about 2.5 MW [30].

To demonstrate the scaling predicted in (41) holds in
general (assuming that Lpulse � �2=�2d), we used a sim-

ple 1D FEL code to generate SASE output for several
different pulse lengths Lpulse and over two different number

of gain lengths to compute the seeding wake after the
monochromator for LCLS-type parameters cited above.
We show the results in Fig. 6, where we scale the seed
power with the ratio (41), so if our results are exact all the
lines should overlap with the theory line. We note that the
seed power is correctly predicted within 10% or so, while
the delay of the seed increases over that predicted by the

theory by an amount approximately equal to Lpulse. For

short pulses, this shift is a minor correction.
The power statistics of the seeding wake are identical to

that of a single SASE intensity mode/spike, meaning that
the effective seed power fluctuates 100%. In the frequency
domain, this reflects the fact that the power fluctuations of
chaotic light within a bandwidth much less than c=��

approach unity.
Finally, we wish to make a few statements in the appli-

cation of Bragg forward scattering to the seeding of rela-
tively long pulses. By long pulses, we mean those for
which Lpulse * �2 sin�=�2d; for the LCLS parameters

used herein, this applies for pulses longer than about
10 fs. In this case, the temporal modes in (37) are spread
over a time that is longer than that associated with Bragg
forward scattering. Thus, we expect that the effective
number of modes contributing to the seed amplitude to
be M & ð�2 sin�=�2dÞ=��. While the peak power in this
trailing monochromatic seed is therefore of order that in
the short pulse case, one must confront the fact that, as the
delay � is increased to accommodate the longer pulse,
the wake is displaced transversely according to xo ¼
c� cot�. Since a typical FEL-produced radiation beam
has �x � 20 �m and cot�� 1 to allow variations
in the central wavelength, this self-seeding scheme is
limited to Lpulse=c & 50 fs unless further provisions are

made. For example, one could imagine improving the
overlap by tilting the electron beam along x, which would
result in an output x-ray pulse that would be correlated in
time and space. Even so, producing such a time-space
correlation on the short electron beam would be quite
challenging.

FIG. 6. Ensemble-averaged power of the monochromatic seed
obtained from simulation, scaled to the theoretical predicted
amplitude (41). We have varied both the electron beam temporal
duration and the undulator length to produce the Lpulse and NG

listed in the key. We have used a flattop electron beam profile to
more accurately determine Lpulse; more realistic distributions can

be expected to yield power deviations from the theory by a factor
of 2. The position of the first maximum linearly increases as the
pulse duration increases, and therefore varies by a few femto-
seconds.
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IV. CONCLUSIONS AND FUTURE DIRECTIONS

We have used the dynamical theory of x-ray diffraction
to calculate approximate, analytic expressions for both the
reflected and forward-scattered electric field amplitudes
resulting from Bragg diffraction of an initially short
x-ray pulse incident on a crystal. Both field profiles are
characterized by a temporal envelope that oscillates in time
�J1ðyÞ=y, where y / �= sin� for the reflected wave while

y / ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d�= sin�

p
for the forward-diffracted field. The de-

layed output is also displaced transversely by an amount
xo ¼ c� cot�, which can be associated with the coupled
wave interaction in the crystal. Finally, we used the devel-
oped theory to analyze in detail the dynamics of the ‘‘wake
monochromator’’ as applied to self-seeding for hard x-ray
free-electron lasers. We found a simple relationship for the
induced delay and output power in terms of the crystal and
SASE parameters.

In the future we plan to extend this treatment to asym-
metrically cut crystals in both Bragg and Laue scattering
geometries, which can be used to analyze the field output
generated by temporally short x-ray pulses from a wide
variety of x-ray optical elements.
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APPENDIX: RIEMANN’S METHOD AND
APPLICATION TO BRAGG SCATTERING

Any linear second-order differential operator L that is
also hyperbolic can be written as acting on the functionA
via (see, e.g., [31])

L ðAÞ� @2

@� 0@�0Aþa
@

@� 0
Aþb

@

@�0AþcA; (A1)

where ð� 0; �0Þ are the characteristic coordinates. We addi-
tionally consider the adjointLy of the operatorL, which is
defined through the inner product relationshipR
RLðAÞ ¼ R

LyðRÞA. This definition implies that
RLðAÞ �LyðRÞA can be written as the divergence of
a vector function

RLðAÞ �LyðRÞA ¼ r � P ¼ @P� 0

@� 0
þ @P�0

@�0 (A2)

with P vanishing at the end points. Thus,Ly is completely
specified by both the equation (A2) and by a set of bound-
ary conditions. Ignoring for the moment these boundary
conditions, one can easily show that the differential
identity (A2) is satisfied if the action of adjoint Ly is
given by [31]

L yðRÞ� @2

@� 0@�0Rþ @

@� 0
ðaRÞþ @

@�0 ðbRÞþcR¼0; (A3)

and the components of P ¼ ðP� 0 ; P�0 Þ are

P� 0 ¼ 1

2

�
R
@A
@� 0

�A
@R

@� 0

�
þ aRA (A4)

P�0 ¼ 1

2

�
R
@A
@�0 �A

@R

@�0

�
þ bRA: (A5)

Riemann’s method is obtained by integrating the differen-
tial identity (A2) over an arbitrary closed region � in the
ð� 0; �0Þ plane. Using Green’s identity on the right-hand
side, we findZ

�
d�½RLðAÞ �ALyðRÞ� ¼

I
�
d‘�̂ � P; (A6)

where the integration proceeds along the boundary � and �̂
is its outward-facing normal. Now, if we assume thatA is
a solution toLðAÞ ¼ 0, and R solves the adjoint equation
LyðRÞ ¼ 0, then

H
d‘�̂ � P vanishes. By inserting P, we

have an expression that can be used to find the solution to
LðAÞ ¼ 0 (assuming it exists) in terms of its values along
the boundary and the Riemann function R.
For the problem of Bragg scattering, a ¼ b ¼ 0, so that

L andLy satisfy the same partial differential equation, and
L is formally self-adjoint. Now, we can find the solution by
determining an appropriate curve � and Riemann function
R which, due to the differing boundary conditions, will
depend on whether we consider forward or backward
scattering. In the latter case, the triangle ABQ is a conve-
nient choice to obtain the reflected wave Ah at point Q,
which is chosen such that �0

B � �0
C meaning that the

solution is given only over the time interval 0 � t �
2d= sin�. If we further assume that the fields A0, Ah

vanish along the line AB, we can integrate (A6) by parts to
write it as

0 ¼
I
�
d‘�̂ � P ¼ RAhjQ �

Z Q

B
d� 0Ah

@R

@� 0

�
Z A

Q

d‘ffiffiffi
2

p
�
Ah

@R

@�0 þ R
@Ah

@� 0

�
: (A7)

Here, the Riemann function R ¼ Rð�; �; � 0; �0Þ satisfies the
adjoint equation associated with the (formally self-adjoint)
system (14):

@2

@�0@� 0
Rð�; �; � 0; �0Þ ¼ ��2

�2
Rð�; �; � 0; �0Þ: (A8)

If R additionally satisfies @R=@�0 ¼ 0 along AQ (the line

� 0 ¼ �0) and @R=@� 0 ¼ 0 along BQ (when �0 ¼ �), then
(A7) gives the solution for the reflected wave in terms of
the incident waveA0 / @Ah=@�

0. The Riemann function
that satisfies these requirements and also RðQÞ ¼
Rð�; �; � 0; �0Þ ¼ 1 is [22]
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Rhð�; �; � 0; �0Þ ¼ J0½2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð� � � 0Þð�� �0Þ

p
=��

þ �� �0

� � � 0
J2½2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð� � � 0Þð�� �0Þ

p
=��:
(A9)

For the Riemann function Rh only the integration along AQ
contributes from (A7), and the field is therefore given by

A hjQ¼
Z Q

A
d� 0

ik0�h

2sin�
A0ð� 0;� 0ÞRhð�;�;� 0;� 0Þ: (A10)

To determine the equation for the transmitted wave at

point P on the rear surface of the crystal CP, we choose the
contour � to be the parallelogram ACPQ, which is re-
stricted to d= sin� � t � 3d= sin� to exclude the effects of
surface reflections. Again assuming that the fieldsA0 and

Ah vanish along the line AB, (A6) can be partially inte-
grated to yield

0 ¼
I
�
d‘�̂ � P ¼ RA0jQP þ

Z Q

P
d�0A0

@R

@�0

þ
Z A

Q

d‘ffiffiffi
2

p
�
A0

@R

@�0 þ R
@A0

@� 0

�

�
Z P

C

d‘ffiffiffi
2

p
�
R
@A0

@�0 þA0

@R

@� 0

�
: (A11)

Along the front surface the incident waveA0 is prescribed
while the reflected wave Ah is given by (A10). On the
other hand, the reflected wave Ah / @A0=@�

0 vanishes
along the rear surface CP. Thus, to reduce (A11) to a
closed form solution, we require that the Riemann function
R0 solving (A8) also satisfies the auxiliary conditions:

@R0

@�0

��������PQ
¼ 0;

@R0

@� 0

��������CP
¼ 0; R0ðPÞ ¼ 1: (A12)

The Riemann function satisfying the boundary conditions
(A12) and the adjoint equation (A8) associated with the
transmitted wave is [22]

R0ð�; �; � 0; �0Þ ¼ J0½2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð� � � 0Þð�� �0Þ

p
=��

þ � � � 0

�� �0 J2½2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð� � � 0Þð�� �0Þ

p
=��;
(A13)

while rearranging (A11) implies that the solution

A 0jP ¼ R0A0jQ �
Z Q

A
d� 0R0ð�; �; � 0; � 0Þ ik0� �h

2 sin�
Ah

�
Z Q

A
d� 0A0ð� 0; � 0Þ @

@� 0
R0ð�; �;�0; � 0Þj�0¼� 0 :
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