74 research outputs found

    A Dynamical Mass Constraint for Pre-Main-Sequence Evolutionary Tracks: The Binary NTT 045251+3016

    Get PDF
    We present an astrometric/spectroscopic orbital solution for the pre-main-sequence binary NTT 045251+3016. Our measurements for the primary and secondary masses are 1.45 +/- 0.19 M_sun and 0.81 +/- 0.09 M_sun, respectively, and 145 +/- 8 pc for the distance of the system, consistent with prior estimates for the Taurus-Auriga star-forming region. The evolutionary tracks of D'Antona & Mazzitelli (1997), Baraffe et al. (1998), and Palla & Stahler (1999) are tested against these dynamical mass measurements. Due to the intrinsic color/T_eff variation within the K5 spectral class, each pre-main-sequence model provides a mass range for the primary. The theoretical mass range derived from the Baraffe et al. (1998) tracks that use a mixing length parameter alpha=1.0 is closest to our measured primary mass, deviating between 1.3 and 1.6 sigma. The set of Baraffe et al. (1998) tracks that use alpha=1.9 deviate between 1.6 and 2.1 sigma from our measured primary mass. The mass range given by the Palla & Stahler (1999) tracks for the primary star deviate between 1.6 and 2.9 sigma. The D'Antona & Mazzitelli (1997) tracks give a mass range that deviates by at least 3.0 sigma from our derived primary mass, strongly suggesting that these tracks are inconsistent with our observation. Observations of the secondary are less constraining than those of the primary, but the deviations between the dynamical mass of the secondary and the mass inferred for the secondary from the various pre-main-sequence tracks mirror the deviations of the primary star. All of the pre-main-sequence tracks are consistent with coevality of the components of NTT 045251+3016.Comment: 27 pages, 6 figures, 5 tables -- accepted by A

    WIYN Open Cluster Study. XXIV. Stellar Radial-Velocity Measurements in NGC 6819

    Full text link
    We present the current results from our ongoing radial-velocity survey of the intermediate-age (2.4 Gyr) open cluster NGC 6819. Using both newly observed and other available photometry and astrometry we define a primary target sample of 1454 stars that includes main-sequence, subgiant, giant, and blue straggler stars, spanning a magnitude range of 11<=V<=16.5 and an approximate mass range of 1.1 to 1.6 Msun. Our sample covers a 23 arcminute (13 pc) square field of view centered on the cluster. We have measured 6571 radial velocities for an unbiased sample of 1207 stars in the direction of the open cluster NGC 6819, with a single-measurement precision of 0.4 km/s for most narrow-lined stars. We use our radial-velocity data to calculate membership probabilities for stars with >= 3 measurements, providing the first comprehensive membership study of the cluster core that includes stars from the giant branch through the upper main sequence. We identify 480 cluster members. Additionally, we identify velocity-variable systems, all of which are likely hard binaries that dynamically power the cluster. Using our single cluster members, we find a cluster average radial velocity of 2.34 +/- 0.05 km/s . We use our kinematic cluster members to construct a cleaned color- magnitude diagram from which we identify rich giant, subgiant, and blue straggler populations and a well-defined red clump. The cluster displays a morphology near the cluster turnoff clearly indicative of core convective overshoot. Finally, we discuss a few stars of note, one of which is a short-period red-clump binary that we suggest may be the product of a dynamical encounter.Comment: 11 pages, accepted for publication in A

    Childhood exposure to ambient air pollution and predicting individual risk of depression onset in UK adolescents

    Get PDF
    Knowledge about early risk factors for major depressive disorder (MDD) is critical to identify those who are at high risk. A multivariable model to predict adolescents’ individual risk of future MDD has recently been developed however its performance in a UK sample was far from perfect. Given the potential role of air pollution in the aetiology of depression, we investigate whether including childhood exposure to air pollution as an additional predictor in the risk prediction model improves the identification of UK adolescents who are at greatest risk for developing MDD. We used data from the Environmental Risk (E-Risk) Longitudinal Twin Study, a nationally representative UK birth cohort of 2,232 children followed to age 18 with 93% retention. Annual exposure to four pollutants – nitrogen dioxide (NO(2)), nitrogen oxides (NO(X)), particulate matter <2.5μm (PM(2.5)) and <10μm (PM(10)) – were estimated at address-level when children were aged 10. MDD was assessed via interviews at age 18. The risk of developing MDD was elevated most for participants with the highest (top quartile) level of annual exposure to NO(X) (adjusted OR=1.43, 95% CI=0.96-2.13) and PM(2.5) (adjusted OR=1.35, 95% CI=0.95-1.92). The separate inclusion of these ambient pollution estimates into the risk prediction model improved model specificity but reduced model sensitivity – resulting in minimal net improvement in model performance. Findings indicate a potential role for childhood ambient air pollution exposure in the development of adolescent MDD but suggest that inclusion of risk factors other than this may be important for improving the performance of the risk prediction model

    WIYN Open Cluster Study. XLVIII. The Hard-Binary Population of NGC 188

    Full text link
    (abridged) We present an in-depth study of the hard-binary population of the old (7 Gyr) open cluster NGC 188. The main-sequence solar-type hard binaries in NGC 188 are nearly indistinguishable from similar binaries in the Galactic field. We find a global solar-type main-sequence hard-binary frequency in NGC 188 of 29 +/- 3 % for binaries with periods less than 10^4 days. For main-sequence hard binaries in the cluster we observe a log-period distribution that rises towards our detection limit, a roughly Gaussian eccentricity distribution centered on e = 0.35 (for binaries with periods longer than the circularization period), and a secondary-mass distribution that rises towards lower-mass companions. Importantly, the NGC 188 blue straggler binaries show significantly different characteristics than the solar-type main sequence binaries in NGC 188. We observe a blue straggler hard-binary frequency of 76 +/- 19 %, three times that of the main sequence. The blue straggler binary eccentricity - log period distribution is distinct from that of the main sequence at the 99% confidence level, with the majority of the blue straggler binaries having periods of order 1000 days and lower eccentricities. The secondary-mass distribution for these long-period blue straggler binaries is narrow and peaked with a mean value of about 0.5 Msun. Predictions for mass-transfer products are most closely consistent with the binary properties of these NGC 188 blue stragglers, which comprise two-thirds of the blue straggler population. Additionally we compare the NGC 188 binaries to those evolved within the sophisticated Hurley et al. (2005) N-body open cluster simulation. We find that additional simulations with initial conditions that are better motivated by observations are necessary to properly investigate the dynamical evolution of a rich binary population in open clusters like NGC 188.Comment: 23 pages, 22 figures, accepted for publication in A

    TESS hunt for young and maturing exoplanets (THYME). III. A two-planet system in the 400 Myr Ursa major group

    Get PDF
    A.W.M. was supported through NASA's Astrophysics Data Analysis Program (80NSSC19K0583). M.L.W. was supported by a grant through NASA's K2 GO program (80NSSC19K0097). This material is based on work supported by the National Science Foundation Graduate Research Fellowship Program under grant No. DGE-1650116 to P.C.T. A.V.'s work was performed under contract with the California Institute of Technology/Jet Propulsion Laboratory funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. D.D. acknowledges support from NASA through Caltech/JPL grant RSA-1006130 and through the TESS Guest Investigator Program grant 80NSSC19K1727.Exoplanets can evolve significantly between birth and maturity, as their atmospheres, orbits, and structures are shaped by their environment. Young planets (<1 Gyr) offer an opportunity to probe the critical early stages of this evolution, where planets evolve the fastest. However, most of the known young planets orbit prohibitively faint stars. We present the discovery of two planets transiting HD 63433 (TOI 1726, TIC 130181866), a young Sun-like (M∗=0.99±0.03) star. Through kinematics, lithium abundance, and rotation, we confirm that HD 63433 is a member of the Ursa Major moving group (τ=414±23 Myr). Based on the TESS light curve and updated stellar parameters, we estimate the planet radii are 2.15±0.10R⊕ and 2.67±0.12R⊕, the orbital periods are 7.11 and 20.55 days, and the orbital eccentricities are lower than about 0.2. Using HARPS-N velocities, we measure the Rossiter-McLaughlin signal of the inner planet, demonstrating that the orbit is prograde. Since the host star is bright (V=6.9), both planets are amenable to transmission spectroscopy, radial velocity measurements of their masses, and more precise determination of the stellar obliquity. This system is therefore poised to play an important role in our understanding of planetary system evolution in the first billion years after formation.PostprintPeer reviewe
    • …
    corecore